
Leveraging MPI-3 shared-memory extensions for
efficient PGAS runtime systems

Huan Zhou, Kamran Idrees, and José Gracia

High Performance Computing Center Stuttgart (HLRS), University of Stuttgart,
Germany

Abstract. The relaxed semantics and rich functionality of one-sided
communication primitives of MPI-3 makes message-passing an attrac-
tive candidate for the implementation of PGAS models. However, the
performance of such implementation suffers from the fact, that current
MPI RMA implementations typically have a large overhead when source
and target of a communication request share a common, local physical
memory. In this paper, we present an optimized PGAS-like runtime sys-
tem which consists in using the new MPI-3 shared-memory extensions
to serve intra-node communication requests and MPI-3 one-sided com-
munication primitives to serve inter-node communication requests. The
performance of our runtime system is evaluated on a Cray XC40 system
through low-level communication benchmarks, a random-access bench-
mark and a stencil kernel. The results of the experiments demonstrate
that the performance of our hybrid runtime system matches the perfor-
mance of low-level RMA libraries for intra-node transfers, and that of
MPI-3 for inter-node transfers.

Keywords: MPI, one-sided communication, remote-memory access, RMA, par-
titioned global address space, PGAS

1 Introduction

The Message Passing Interface (MPI, [7]) is the de-facto communication stan-
dard for distributed-memory parallel programming. One particular advantage
for parallel programmers is the portability of MPI performance across systems
with different underlying network hardware: While HPC hardware vendors and
the MPI community spend considerable effort to optimize MPI implementations
for the latest HPC network infrastructure, other alternative communication li-
braries typically do not have optimized support for a wide range of network
hardware. With the advent of the remote-memory access (RMA, also referred
to as one-sided communication) functionalities in MPI-2 [6] and the significant
improvement of the RMA in MPI-3 [7], MPI has become an adequate com-
munication backend for the implementation of partitioned global address space
(PGAS) programming models[11].

DASH[4] is a C++ template library which implements a PGAS-like program-
ming model. Unlike other PGAS models, DASH acknowledges the multi-level hi-
erarchical or compositional nature of today’s supercomputing systems, e.g cores,
processors, nodes, racks, islands, full system, and thus does not classify data into
remote and local only, but allows for various degrees of remoteness. The tem-
plate library sits on top of a runtime system (DART), which is responsible for
providing services to the DASH library, including the definition of semantics
and the abstraction of the underlying hardware. In particular, DART provides
functions for the management of teams and groups, one-sided communication,
collective communication operations, and global memory management.

A previous paper describes DART-MPI[17], a portable implementation of the
DASH runtime which uses MPI-3 as low-level communication substrate and thus
exhibits similar performance characteristics across various network topologies.
Most other PGAS implementations however, do not use MPI as communication
substrate; UPC[2] for instance is frequently based on GASNet[1], while GA[8]
uses ARMCI[9] as underlying communication substrate.

Originally, all the RMA operations in DART-MPI are substantially mapped
directly to the corresponding MPI-3 RMA operations. In particular, DART-MPI
invokes MPI RMA operations when source and target of a transfer reside on the
same node and share local, physical memory. Alternatively, one could do direct
load/store operations without additional copies in the runtime layer. In fact,
a performance evaluation in the previous paper [17] showed that DART-MPI
performance does not increase substantially if data is transferred within the
same node or even NUMA domain.

In this paper, the contributions we make on DART-MPI are mainly threefold:

– We utilize the MPI-3 shared-memory extensions to enable direct memory
access (memory sharing) for DART-MPI blocking operations for intra-node
transfers. However, we turn to the MPI RMA operations when the non-
blocking or inter-node data movements happen.

– We redefine the existing translation table to facilitate the reference to the
DART-MPI collective global pointer when beginning with the shared mem-
ory window in mind.

– Using the low-level and application-level benchmarks, we show the improved
performance achieved by embedding the shared-memory-related functional-
ity into DART-MPI.

The rest of the paper is organized as follows: In section 2, we present the
background for our work. In section 3, we describe the improved implementation
of DART-MPI and evaluate the performance of DART-MPI in section 4. We
summarize in section 5.

2 Background

From the perspective of PGAS models, the recent MPI-3 standard [7] signif-
icantly improves the one-sided communication system. The relaxation of the

RMA semantics, the concretization of the memory consistency model, the intro-
duction of new window types, fine-grained mechanisms for synchronization and
data movement and atomic operations, make MPI-3 RMA attractive as back-
end for PGAS implementations. Additionally, the results in [3] indicate that the
new MPI-3 RMA system has performance advantages over the MPI-2 interfaces.
In this section, we briefly explain two new MPI-3 window types: dynamically-
allocated window and shared-memory window, which will play a central role in
understanding how to enable memory sharing within a node in DART-MPI. A
more detailed description of the other new functionalities can be found in [5].

2.1 MPI Dynamically-allocated Memory Window

Dynamically-allocated window is a new concept in MPI-3 which allows to arbi-
trarily grow and resize a given window by repeatedly attaching/detaching mul-
tiple, non-overlapping, user allocated memory regions to/from the associated
window object.

The function MPI Win create dynamic is called to generate a window ob-
ject d-win without associating any initial memory block with it. User allocated
memory is attached to d-win, and thus made available for RMA operations,
by invoking the function MPI Win attach, and detached with MPI Win detach.
Once memory regions are detached from d-win, they will not be the target of
any MPI RMA operation on d-win unless they are re-attached. Notably, any lo-
cal memory region may be attached and detached repeatedly, and multiple but
non-overlapping memory regions are allowed to be attached to the same window.

MPI Get address returns the address of the given memory and should be
called to validate the RMA operations on d-win. This is due to the fact that the
address of the target memory location is passed directly as window displacement
parameter to the MPI RMA operations. Therefore, the target process is required
to send the address of a certain memory location, that locals to it, to the origin
process who inquires for it.

Noticeably, Potluri et al.[13] have published benchmark results which demon-
strate that dynamically-allocated windows perform as good as the traditional
static MPI-created windows in terms of put latency.

2.2 MPI Shared-memory Window

The unified memory model, which is fully supported in MPI-3 in order to utilize
the cache-coherence characteristics embodied in the modern hardware architec-
tures, is a requirement for exposing the MPI shared-memory window.

To collectively allocate the shared memory region across all the processes in
a given communicator, MPI-3 defines a portable, shared-memory window alloca-
tion interface – MPI Win allocate shared to generate a shared-memory allocated
window object shmem-win. In addition, the communicator that the shmem-win
bases on should be a shared-memory capability communicator, which means
it is allowed to build a memory sharing region on top of this communicator.
Therefore, the additional function MPI Comm split type, as an extension of the

function MPI Comm split, identifies sub-communicators on which the shared
memory region can be created with the type of MPI COMM TYPE SHARED.
The function MPI Win shared query is provided to query the base pointer to
the memory on the target process. Coupled with the shmem-win, the locally-
allocated memory can even be accessed by the MPI processes in the group of
shmem-win with immediate load/store operations. Such access pattern can make
data movements bypass the MPI layer and directly go through memory sharing,
which brings in significant performance improvement.

3 The DART-MPI Implementation Design

In this section, we explain the approach of enabling the memory sharing option
for the blocking RMA operations in DART-MPI, and address the modifications
and improvements that are made with respect to the existing DART-MPI.

There are two types of DART global memory – collective and non-collective[17].
The collective global memory, pointed to by collective global pointer, is created
and distributed across the given team. The non-collective global memory, pointed
to by non-collective global pointer, is only allocated in the global address space
of the calling unit.

We assume that all the following collective global memory blocks are allo-
cated across team T consisting of P units.

3.1 Communication Hierarchy of the DART-MPI Blocking RMA
Operations

To make the DART-MPI intra-node communication more efficient, we alter the
existing implementation to let the DART-MPI blocking operations deal with the
data locality explicitly. Note, that the DART-MPI non-blocking RMA interfaces
do not yet support the memory sharing as described earlier in this paper.

In the team creation code, the team T is split into sub-teams on which it is
possible to enable communication via sharing memory. We accomplish this by
calling MPI Comm split type with key MPI COMM TYPE SHARED. In addi-
tion, a d-win is generated without any memory attached when team T is created,
indicating one-to-one relationship is built between d-win and T . Such relation-
ship is stored in an array named dart win lists. Therefore, the position of the
team T in teamlist [17] can also be a perfect index into the array dart win lists.
The d-win can potentially be utilized to complete all the data movements where
the units are located in different sub-teams.

In the collective global memory allocation code, instead of allocating a block
of memory from a memory pool that is reserved for T , we need to create a
shmem-win spanning the memory of the specified size on each sub-team men-
tioned above. On top of that, each unit of the team T should attach the locally-
allocated memory to the d-win explicitly to make them available for the units
in the varying sub-teams. As the figure 1 shows, there are two overlapping win-
dows sharing the same memory region for different purposes. On the one hand,

Fig. 1. Nesting of shared-memory window inside RMA window for blocking put/get
operations

the units covered by the same shmem-win can communicate with each other
via memory sharing (e.g. memcpy). On the other hand, the units located in dif-
ferent sub-teams should turn to the d-win for completing the remote accesses
with MPI RMA operations. Note, that using shared-memory in the DART-MPI
non-blocking RMA operations is anything but trivial as for instance the direct
memcpy function itself is a blocking operation. Furthermore, the introduction
of DMA copy engine could be a workaround to support asynchronous memory
copying [16] for DART-MPI.

In the non-collective global memory allocation code, we provide two over-
lapping global windows, which indicates that all the DART-MPI non-collective
allocations fall into two pre-defined global windows. One of the two windows is
generated first spanning a large amount of shared memory region, the other is
then created with MPI Win create covering the above shared memory region to
enable the message transferring among different sub-teams. As a result, These
two windows share the static shared memory region, and independently imple-
ment the data movements on them in an efficient manner.

3.2 DART-MPI Collective Global Pointer Dereference

In this section, we mainly explain the collective global pointer dereference of the
updated DART-MPI since the non-collective global pointer basically continues
to use the original dereference mechanism.

Besides the altered communication pattern, the meaning of the member segid
in the global pointer is also re-specified for management convenience and data
access efficiency. Therefore, the segid in the collective global pointer is no longer
set to the related team ID but rather an increasing positive integer number,
which can be used to determine any collective global block uniquely.

With the aid of the translation table[17], collective global pointer can get
analyzed adequately. Thus it is critical for us to understand how the translation
table reacts to the hierarchical communication pattern and the modification
made in the global pointer, which also has an impact on the original collective
global pointer deference method.

To be consistent with the modified definition of segid in global pointer, the
key in the translation table is altered and the segid is utilized instead. The
translation table is arranged in an ascending order based on the key segid. As
a result, we do not need to bind a separate translation table to each team,
instead a single translation table is active during the lifetime of a DART-MPI
program. Once a block of collective global memory is created, a unique segid and
the related shmem-win are generated and then added to the translation table
together, signifying the one-one relationship between collective global pointer
and the related shmem-win. In addition, according to the section 2, we learn
that after attaching the shared memory region onto the d-win locally, the routine
MPI Get address should be invoked so as to collect the beginning address of the
local shared memory region of each unit in team T. Thus, the translation table
should also contain an array disp-set storing those separate addresses. As an
example, when unit i in the team T is targeted, then the ith item in the related
disp-set should be obtained and be utilized in the future to locate the target
memory location in unit i. The offset returned in the generated collective global
pointer is initialized to 0.

The location of target data is given by DART global pointer, which incor-
porates the information on the target unit, segid and a specific offset. For the
collective global pointer, in the case of intra-node communications, we firstly
query the appropriate shmem-win that covers the expected target location from
the translation table according to the segid, then decode the location with offset.
In the case of inter-node communications, we firstly query the disp-set , indicates
the beginning address of the window segment of each unit in team T , from the
translation table according to the segid, and then get the correct d-win from the
array dart win lists and translate the absolute unit id to the relative unit id i in
T , and finally access the remote data through MPI RMA operations, where the
value of offset+disp-set[i] is passed as parameter target disp.

4 Performance Evaluation

We now present performance evaluation experiments and analyze their results.
A set of benchmarks, including low-level communication and application bench-
marks, are conducted fully in this section. All the benchmarks are carried out on
a Cray XC40 system named Hornet. Each node is based on Intel Haswell proces-
sors and consists of 2 sockets, each with 12 cores. The different compute nodes
are interconnected through a Cray Aries network. Foremost, we are interested
in the evaluation of the performance advantage of our DART-MPI, using MPI-3
shared-memory and RMA, over native MPI-3 RMA. Note, that we use Cray
MPI, and that DART-MPI is also built on top of it. In addition, we compare
DART-MPI with two important PGAS implementations: UPC and OpenSH-
MEM, which are both fully implemented and tuned on the Cray XC40 system.
In all cases we use the Cray compiler, which also supports UPC (through the
compiler flag -h upc) and OpenSHMEM (as a library). We do not show the

 0.01

 0.1

 1

 10

 100

 1000

 1 32 1024 32768 1.04858e+06

L
a
te

n
c
y
 (

u
s
)

Message Size (bytes)

DART-MPI

MPI-RMA

UPC

OpenSHMEM

(a) Blocking put (intra-node)

 0.01

 0.1

 1

 10

 100

 1000

 1 32 1024 32768 1.04858e+06

L
a
te

n
c
y
 (

u
s
)

Message Size (bytes)

DART-MPI

MPI-RMA

UPC

OpenSHMEM

(b) Blocking get (intra-node)

Fig. 2. Blocking put/get latency on 2 ranks/units

 0.01

 0.1

 1

 10

1 2 4 8 16 32 64 128 255

L
a
te

n
c
y
 (

u
s
)

Target Processor

DART-MPI

MPI-RMA

UPC

OpenSHMEM

(a) Blocking put scalability (8 bytes)

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

1 2 4 8 16 32 64 128 255

L
a
te

n
c
y
 (

u
s
)

Target Processor

DART-MPI

MPI-RMA

UPC

OpenSHMEM

(b) Blocking put scalability (1 Mb)

Fig. 3. Blocking put scalability on 256 PEs

 0.01

 0.1

 1

 10

1 2 4 8 16 32 64 128 255

L
a
te

n
c
y
 (

u
s
)

Target Processor

DART-MPI

MPI-RMA

UPC

OpenSHMEM

(a) Blocking get scalability (8 bytes)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

1 2 4 8 16 32 64 128 255

L
a
te

n
c
y
 (

u
s
)

Target Processor

DART-MPI

MPI-RMA

UPC

OpenSHMEM

(b) Blocking get scalability (1 Mb)

Fig. 4. Blocking get scalability on 256 PEs

error bars in the following figures, as the standard deviation from the mean is
always relatively small and thus error-bars would only confuse the plots.

4.1 Low-level Communication Benchmarks

In this section, we assess the raw communication performance based on the
OSU Micro Benchmark[10]. Firstly, we test the average latencies of the blocking
operations of DART-MPI as well as the counterparts of MPI, UPC and Open-
SHMEM[12] only in the case of intra-node (communication within one node).
Secondly, we evaluate how the blocking put and get operations scale with in-
creasing logical distance between two involved processes for DART-MPI, MPI,
UPC and OpenSHMEM.

Figure 2 shows the average latency of intra-node blocking put and get oper-
ations for message size ranging from 20 to 221. In all cases the latency roughly
keeps constant for small messages (here < 1024 byte). Beyond that the comple-
tion time is dominated by the actual message transfer time and basically grows
linearly with the message size as expected. Noticeably, the curves for UPC,
OpenSHMEM and DART-MPI are very close to each other. For small messages,
native MPI performs more than 10 times slower than the other three models.
This fully illustrates that the overhead of MPI one-sided operations is relatively
high compared to that of direct load/store operations when data movements
happen within one node.

A careful comparison shows, that DART-MPI always performs better for
blocking put operations than UPC (by about 20%) and OpenSHMEM (by about
40%), although such advantage becomes negligible as the message size increases.
For blocking get operations, the variance between them is much lower in absolute
terms, but the trend of curves seems to suggest that DART-MPI (and to a lesser
extend, also UPC) performs slightly slower than OpenSHMEM.

Next, we evaluate the scalability of the blocking RMA operations as a func-
tion of logical distance between source and target. We send messages of fixed
size from process 0 to target processes varying from 1 to 255. Note that the job
consists of 256 ranks/units in total, which corresponds to 11 nodes on Hornet.
Figures 3 and 4 show the performance of blocking put and get operations, re-
spectively, for the short message size of 8 bytes and the long message size of 1Mb
as a function of logically increasing distance between the origin and target.

As expected the latency remains constant for message transfers within one
node. However, at a logical distance between 16 and 32, i.e. when leaving one
node and targeting the second one, the latency goes up significantly in all cases
except for native MPI, as the overhead of native MPI intra-node data transfers
is relatively high to begin with (as reported above). The curves for DART-MPI
nearly sit above those for native MPI for inter-node data transfers. This is ex-
pected since DART-MPI falls back on MPI when communicating across nodes.
Both, however, perform in general slightly worse than UPC and OpenSHMEM in
latency for inter-node communications. An exception occurs when executing the
OpenSHMEM blocking get operation when transferring large messages; it per-
forms 5 to 10 times worse than the other three models in latency. We do not have

 0.0001

 0.001

 0.01

 0.1

 2 4 8 16 32 64 128 256 512 1024

G
U

P
/s

Number of Processors

DART-MPI

MPI-RMA

UPC

OpenSHMEM

Fig. 5. Random Access performance comparison

 0.006

 0.007

 0.008

 0.009

 0.01

 0.011

 0.012

 0.013

4 8 16

C
o
n
v
e
rg

e
n
c
e
 T

im
e
 (

s
)

Number of Processors

DART-MPI

MPI-RMA

UPC

OpenSHMEM

(a) 64×64

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

 38

64 128 256 512

C
o
n
v
e
rg

e
n
c
e
 T

im
e
 (

s
)

Number of Processors

DART-MPI

MPI-RMA

UPC

OpenSHMEM

(b) 1K×1K

Fig. 6. Five-point stencil performance comparison

an explanation for such behavior, but the full data set we have seems to suggest
that OpenSHMEM blocking get operation shows relatively poor performance for
large messages.

4.2 Application Benchmarks

In this section we present the results of two application benchmarks, namely
Random Access and a stencil code kernel. All benchmarks were run on up to
1024 cores, i.e. 45 nodes on Hornet.
Random Access: The Random Access (RA) benchmark[14] is one of the HPC
Challenge benchmarks developed for the HPCS program. It consists of concur-
rent, atomic updates of random elements of a distributed array by all ranks [15].
The general performance metric is giga-updates per second (GUPs). The mes-
sages involved are very small, i.e. 8 bytes. Figure 5 shows the performance in

terms of GUPs for the DART-MPI, native MPI, UPC and OpenSHMEM ver-
sions of the RA benchmark for the number of processes varying from 2 to 1024.
Interestingly, DART-MPI, UPC and OpenSHMEM achieve similar performance.
The performance of the native MPI version is relatively poor in all cases, and
the performance of the DART-MPI version suffers at large number of ranks due
to the underlying MPI.

The relative performance evaluation of the DART-MPI, UPC and OpenSH-
MEM versions is complex stemming from the fact, that the blocking get, put and
atomic operations are involved. DART-MPI performs slightly better than Open-
SHMEM when RA runs on a single node. However, we can see there is a clear
gap between the performance of DART-MPI and that of UPC and OpenSHMEM
when the application is carried out across nodes. This is due to the fact that
the occurrence of the inter-node remote accesses increases as the growing of the
running nodes. The inter-node communication time performance of DART-MPI
is poor relative to that of UPC and OpenSHMEM for smaller messages (e.g. 8
bytes), as obvious from figure 3 and 4. In addition, the atomic operation con-
tributes partly to such performance gap between the DART-MPI, UPC and
OpenSHMEM versions, respectively. Noticeably, although the increase in the
number of inter-node remote accesses exacerbates the performance of DART-
MPI, DART-MPI can still perform better than native MPI, which has to do
with the fraction of memory sharing for the intra-node data movements.

Five-Point 2D Stencil Computation: This kernel computes the 2D Poisson
equation by applying a five-point stencil on a square grid, and solving in an
iterative way with the Gauss-Seidel method. The N × N grid is decomposed
evenly by rows among numprocs distributed process. On the Cray XC 40, each
element of the grid is a 4-byte floating point number. The kernel uses extra halo
zones to exchange boundary elements between neighbors, A total of 4 × N ×
(2 × numprocs − 2) bytes of data per iteration is transmitted using blocking
put operations. With those halo data, all the inner grid cells can get updated
successfully. We run the stencil kernel until convergence of solution. The time
recorded in the benchmark includes the execution time of the Gauss-Seidel solver
(local computation part) and communication time for halo exchange.

We run the five-point stencil benchmark for DART-MPI, MPI, UPC and
OpenSHMEM versions on the 64 × 64 and 1K × 1K size of grids respectively.
Figure 6(a) shows comparison results of a 64×64 grid distributed across 4, 8 and
16 processes on a single node. We can see that the DART-MPI version always
performs slightly better than the UPC version, when all the data movement
happen within a single node. In addition, DART-MPI, UPC and OpenSHMEM
outperform native MPI by ∼ 35% for 16 processes.

The performance of the DART-MPI version degrades when there are data
movements across nodes. Figure 6(b) shows benchmark results of a 1K × 1K
grid for 64, 128, 256 and 512 processes. The convergence time of the DART-MPI
and OpenSHMEM versions decreases as the number of processes involved is
increased, which suggests that DART-MPI and OpenSHMEM are more scalable
than native MPI and UPC from the perspective of this benchmark.

5 Conclusions

DART-MPI is the runtime system for the PGAS-like C++ template library
DASH and built on top of MPI-3 one-sided communication primitives. In this
paper we present an optimized design of DART-MPI which uses the new MPI-3
shared-memory extension for intra-node communications. In essence, we nest
MPI-3 shared-memory windows inside RMA windows to do direct load/store
operations for intra-node transfers, and MPI-3 one-sided communication opera-
tions on the RMA windows for inter-node transfers.

We expect, that this optimization will improve the performance of DART-
MPI for intra-node communication. To verify this claim, we run three classes
of benchmarks, namely low-level put/get benchmarks, a Random Access bench-
mark and a stencil application kernel on the Cray XC40 system. We evaluate the
performance of DART-MPI against that of native MPI. In addition, we compare
DART-MPI to OpenSHMEM and UPC as two other PGAS-like programming
models. The results of the evaluation demonstrate, firstly, that DART-MPI per-
forms significantly faster than MPI RMA when messages are transmitted within
a single node, i.e. that our optimization of DART-MPI leads to a better intra-
node communication performance, secondly, that the comparison to OpenSH-
MEM and UPC show that the performance improvement that is brought by
our optimization makes DART-MPI comparable with UPC and OpenSHMEM.
Additionally, our performance evaluation also shows, that for some relevant op-
erations – especially the inter-node RMA operations, DART-MPI still performs
slower than the alternative PGAS approaches.

In this paper, we have only considered blocking RMA put and get operations.
The current design of DART does not include an asynchronous progress engine,
and therefore relies on other parts of the software stack to do progress as neces-
sary for non-blocking operations. In particular, we rely on MPI for non-blocking
RMA operations and thus see no benefit for non-blocking DART operations. An
asynchronous progress engine which allows optimization of non-blocking intra-
node transfers is a subject of further research.

Acknowledgments

The authors would like to thank Karl Fürlinger for fruitful discussion on the
DASH runtime design. We gratefully acknowledge funding by the German Re-
search Foundation (DFG) through the German Priority Programme 1648 Soft-
ware for Exascale Computing (SPPEXA).

References

1. D. Bonachea and J. Jeong. GASNet: A Portable High-Performance Communica-
tion Layer for Global Address-Space Languages. Technical report, CS258 Parallel
Computer Architecture Project, 2002.

2. W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, and K. Warren. Introduc-
tion to UPC and Language Specification. Technical Report CCS-TR-99-157, IDA
Center for Computing Sciences, 1999.

3. James Dinan, Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and
Rajeev Thakur. An implementation and evaluation of the MPI 3.0 one-sided com-
munication interface. In Preprint ANL/MCS-P4014-0113 . IEEE Computer Soci-
ety, 2013.

4. Karl Fürlinger, Colin W. Glass, José Gracia, Andreas Knüpfer, Jie Tao, Denis
Hünich, Kamran Idrees, Matthias Maiterth, Yousri Mhedheb, and Huan Zhou.
DASH: Data Structures and Algorithms with Support for Hierarchical Locality.
In Euro-Par 2014: Parallel Processing Workshops - Euro-Par 2014 International
Workshops, Porto, Portugal, August 25-26, 2014, Revised Selected Papers, Part II,
pages 542–552, 2014.

5. T. Hoefler, J. Dinan, R. Thakur, B. Barrett, P. Balaji, W. Gropp, and K. Under-
wood. Remote Memory Access Programming in MPI-3. Technical report, Argonne
National Laboratory, 2013.

6. MPI Forum. MPI: A Message-Passing Interface Standard. Version 2.2, September
4th 2009. available at: http://www.mpi-forum.org (Dec. 2009).

7. MPI Forum. MPI: A Message-Passing Interface Standard. Version 3.0, September
21st 2012. available at: http://www.mpi-forum.org (Sept. 2012).

8. J. Nieplocha, R. J. Harrison, and R. J. Littleeld. Global arrays: A nonuniform
memory access programming model for high-performance computers. Journal of
Supercomputing, 10:169–189, 1996.

9. Jarek Nieplocha and Bryan Carpenter. ARMCI: A portable remote memory copy
library for distributed array libraries and compiler run-time systems. Technical
report, 1999.

10. OSU Micro-Benchmarks. [online], 2014. http://mvapich.cse.ohio-
state.edu/benchmarks/.

11. Partitioned Global Address Space. [Online], 2014. http://www.pgas.org/.
12. S. Poole, O. Hernandez, J. Kuehn, G. Shipman, A. Curtis, and K. Feind. Open-

SHMEM - Toward a Unified RMA Model. In David Padua, editor, Encyclopedia
of Parallel Computing, pages 1379–1391. Springer US, 2011.

13. Sreeram Potluri, Sayantan Sur, Devendar Bureddy, and Dhabaleswar K. Panda.
Design and Implementation of Key Proposed MPI-3 One-Sided Communication
Semantics on InfiniBand. In Yiannis Cotronis, Anthony Danalis, Dimitrios S.
Nikolopoulos, and Jack Dongarra, editors, EuroMPI, volume 6960 of Lecture Notes
in Computer Science, pages 321–324. Springer, 2011.

14. RandomAccess GUPS (Giga Updates Per Second). [online], 2013.
http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/.

15. P. Shamis, M. G. Venkata, S. W. Poole, A. Welch, and T. Curtis. Designing a
High Performance OpenSHMEM Implementation Using Universal Common Com-
munication Substrate as a Communication Middleware. In OpenSHMEM and Re-
lated Technologies. Experiences, Implementations, and Tools, pages 1–13, March
4-6 2014.

16. K. Vaidyanathan, L. Chai, W. Huang, and D. K. Panda. Efficient Asynchronous
Memory Copy Operations on Multi-Core Systems and I/OAT. In IEEE Interna-
tional Conference on Cluster Computing, 2007.

17. Huan Zhou, Yousri Mhedheb, Kamran Idrees, Colin W. Glass, José Gra-
cia, Karl Fürlinger, and Jie Tao. DART-MPI: An MPI-based Imple-
mentation of a PGAS Runtime System. In PGAS’14, Oct. 06-10 2014.
http://dx.doi.org/10.1145/2676870.2676875.

