DART-CUDA: A PGAS Runtime System for
Multi-GPU Systems

Lei Zhou
Department of Computer Science
Ludwig-Maximilians-Universitdt (LMU) Miinchen
Munich, Germany
Email: zhoul@cip.ifi.lmu.de

Abstract—The Partitioned Global Address Space (PGAS) ap-
proach is a promising programming model in high performance
parallel computing that combines the advantages of distributed
memory systems and shared memory systems. The PGAS model
has been used on a variety of hardware platforms in the form
of PGAS programming languages like Unified Parallel C (UPC),
Chapel and Fortress. However, in spite of the increasing adoption
in distributed and shared memory systems, the extension of the
PGAS model to accelerator platforms is still not well supported.

To exploit the immense computational power of multi-GPU
systems, this work is concerned with the design and imple-
mentation of a Partitioned Global Address Space model for
multi-GPU systems. Several issues related to the combination of
logically separate GPU memories on multiple graphic cards are
addressed. Furthermore, the execution model of modern GPU
architectures is studied and a task creation mechanism with
load balancing is proposed. Our work is implemented in the
context of the DASH project, a C++ template library that realizes
PGAS semantics through operator overloading. Experimental
results suggest promising performance of the design and its
implementation.

Keywords-PGAS, Partitioned Global Address Space, Multi-
GPU systems, CUDA, Heterogeneous computing

I. INTRODUCTION

Threading and message passing are the two dominant pro-
gramming models on current parallel systems. Programming
with threads on a shared memory system is conceptually
simpler than coordinating the explicit sending and receiving
of messages. However, the lack of control over data locality
can hamper performance and true shared memory systems are
limited in their size to a few dozen cores.

PGAS (Partitioned Global Address Space) approaches try to
bring the advantages of shared memory style programming to
large scale distributed systems. A PGAS language or library
uses put and get operations to local and remote memory loca-
tions to provide a programming model that is very similar to
programming with threads. Additionally, the locality (affinity
to processing elements) of data is made explicit to enable
efficient program development.

The efforts of realizing PGAS models have concentrated
primarily on multi-core and multi-chip platforms based on
message-passing and shared memory techniques [2l], while
accelerator architectures have rarely been focused on. With the
widespread adoption of GPGPU (General Purpose Computing

Karl Fiirlinger
Department of Computer Science
Ludwig-Maximilians-Universitit (LMU) Miinchen
Munich, Germany
Email: Karl.Fuerlinger@nm.ifi.Imu.de

on GPUs) and generally accepted GPU programming models
like CUDA and OpenCL gaining popularity, possibilities and
demands for extending and unifying CPU memory spaces with
GPU memory spaces in GPU-equipped systems arise in the
field of high performance computing.

In this paper we explore the extension of the PGAS model
to multi-GPU systems. Our work is realized in the context
of DASHE], a C++ template library that implements PGAS
semantics through operator overloading. DASH is based on a
PGAS runtime system API called DART and we describe the
design and implementation of DART for multi-GPU systems
and call our implementation DART-CUDA.

The rest of this paper is organized as follows: In Sect. [} we
provide an overview of DASH and DART, the context for our
paper. In Sect. [[II] we describe the design and implementation
of DART-CUDA focusing in detail on the memory and execu-
tion model for multi-GPU systems. In Sect. [[V]we evaluate our
approach by micro-benchmarks and an application case study.
Related work is discussed in Sect. [V] and we summarize and
provide an outlook on future work in Sect.

II. DASH AND DART

DASH [3] is a C++ template library that realizes PGAS
semantics through operator overloading and provides the pro-
grammer with data structures that can be distributed over
multiple nodes of a distributed memory system. As DASH
does not propose a new language or depend on a custom
pre-compiler or compiler it can be integrated more easily in
existing applications than stand-alone PGAS languages like
UPC [4]] or Chapel [1]. DASH uses the concept of iterators to
exploit data affinity and extends the two-level (local/remote)
locality concept to a more flexible hierarchical organization.
DASH is built on top of an intermediate PGAS runtime system
interface called DART (the DASH runtime).

DART defines important concepts and programming enti-
ties and offers services to DASH. Most importantly, global
memory allocation and access operations are realized by
DART. The DART API can be implemented atop several
underlying programming interfaces. A scalable implementa-
tion for distributed memory systems based on MPI-3 RMA

Uhttp://www.dash-project.org

http://www.dash-project.org

(remote memory access) operations is described in [11]. An
additional DART implementation for shared memory nodes
using System-V shared memory is called DART-SYSV and is
the basis for the work described in this paper.

The rest of this section sets the stage by providing an
overview of the most important concepts and functionality of
DART, the full DART specification is available for download
online: http://www.dash-project.org/dart/

The DART API can be categorized into five functional
sections (Initialization and Shutdown, Unit and Team Manage-
ment, Global Memory Allocation, Communication, and Syn-
chronization), the implementation of each section in DART-
CUDA is briefly described in Sect. The most challenging
aspects of porting DART to GPU platforms are related to the
memory model and the execution model, these two aspects will
be discussed in detail in Sect. and respectively.

The individual participants in a DASH/DART program are
called units and DART follows the static SPMD programming
model where the number of units is specified at program
launch and remains unchanged throughout the entire program
run. All calls to DART have to happen between dart_init and
dart_exit. To start a program, either an existing job launcher
is reused (e.g., mpirun) or in the case of the shared memory
implementation, a custom launcher called dartrun is used.

In DASH/DART, units are organized in teams. Each pro-
gram starts with a default team containing all the units in the
program called DART_TEAM_ALL and based on an existing
team, a new team can be formed by selecting a subset of
the units of the old team. Teams are the basis for collective
communication operations as well as collective memory allo-
cation operations. Teams are organized in DASH in a hierarchy
that can be used to exploit the hierarchical organization of a
machine or algorithm.

Global memory is allocated on demand with visibility to a
certain team using one of two memory allocation mechanisms.
A local-global allocation is a non-collective call that allocates
memory that is visible to all units in the program and a team-
aligned allocation is a collective operation on a certain team
that results in memory that is only accessible by members of
that team. All interactions with DART global memory involve
global pointers. A global pointer is represented as a 128 bit
structure where 32 bits are identifying a unit, 16 bits are used
to identify a memory segment within that unit, 16 bits are
reserved for various flags, and the remaining 64 bits are used
as either a virtual address or an offset.

III. DESIGN AND IMPLEMENTATION OF DART-CUDA

The design for DART-CUDA is based on DART-SYSV.
In addition to regular CPU units (those that execute on the
CPU and allocate their memory from CPU memory), in
DART-CUDA a GPU unit is an entity executing on the CPU
that represents compute and memory capabilities of a GPU.
Le., a GPU unit satisfies memory allocation operations by
requesting memory on the GPU using CUDA functions such
as cudaMalloc instead of allocating CPU (host) memory.

There are several options of how we can map between units
and GPU devices. Since we are free to create as many GPU
units on the host side as we like, we chose a model where one
unit corresponds to one particular GPU. There may, however,
be several different units mapped to the same GPU. In the
following we describe the extensions and adaptations have
been implemented to support DART on multiple GPU devices.

Initialization and Shutdown: DART provides dart_init and
dart_exit for initialization and shutdown of the runtime. Appli-
cations are started by the launcher dartrun, which receives
command line parameters that specify the number of GPU
units, and creates processes corresponding to unit entities. In
DART-CUDA, the launcher further handles the initialization
of GPU devices and the runtime process for task services
(cf. [[IT-B5). After being initialized by the launcher, GPU units
create their own CUDA contexts so that resources of the
mapped devices can be used in the subsequent computation.

Units and Teams: DART-CUDA inherits the implementa-
tion of unit and team management from DART-SYSV, and
extends the support for GPU units. At the startup of a DASH
application, the numbers of CPU and GPU units can be
specified respectively via command line parameters. GPU and
CPU units share a single global address space and can access
each other’s addresses.

Global Memory Management: Due to the difference be-
tween GPU memory and CPU shared memory, the memory
management is significantly modified in DART-CUDA to
support the integration of device memory on multiple devices.
Furthermore, a buddy allocator is added to fulfill memory
requests of PGAS memory over multiple GPU devices. The
memory model is described in detail in section

Communication: The one-sided and collective communi-
cation functions are modified in DART-CUDA to implement
the new memory model. cudaMemcpy and cudaMemcpyAsync
are used to implement GPU memory access, and the collection
of cudalPC APIs are called to implement inter-process device
memory access that realizes the semantic of global address
space.

Synchronization: DART-CUDA reuses the shared memory
implementation of basic synchronization mechanisms like
barrier. For asynchronous PGAS memory access, CUDA
functions for stream creation and synchronization (cudasS-
treamCreate(), etc.) are used.

In addition, an execution model was specified and imple-
mented in DART-CUDA. This execution model is described
in detail in section [I[-Bl

A. Memory Model

The design of a PGAS memory model includes four chal-
lenges. The first one is the integration of multiple logically
separate memory spaces, which makes a single global address
space possible. The second challenge is the support for global
access, especially on the platforms where a shared memory
mechanism is absent. The third challenge is the support for
common memory allocation methods adopted in PGAS pro-
grams like aligned allocation to boost performance of remote

http://www.dash-project.org/dart/

accesses. Finally, the locality of reference has to be expressed
in the design. The model should preserve locality properties
of variables, while memory allocation should be performed
under the consideration of device affinity. The four challenges
will be discussed in more detail in the following subsection
before describing some implementation details.

1) Challenges: Unified Address Space: Typically, a PGAS
system achieves a unified global address space by means of
shared memory or one-sided messaging. With regard to the
GPU architecture and multi-GPU systems, this means that
GPU memory spaces on different devices are to be joined, and
inter-device access has to be supported. In this new model,
each unit corresponds to an entity on the host (CPU) such
as a process or thread, and is mapped to one GPU device
and occupies the device memory space on the mapped GPU.
Standalone address spaces of devices constitute the global
shared address space. In other words, the global address space
on a multi-GPU system is naturally partitioned by devices,
and the space size of each partition is limited by the available
physical memory size of respective device due to the lack of
a virtual memory mechanism.

Global Memory Access: As introduced in section [} in
the DASH/DART programming model all units are capable of
accessing the entire shared address space via global point-
ers. When the global pointer points to an address actually
belonging to the address space of another unit, the information
helps the runtime to determine the actual address managed by
the OS, and the access is performed as if it was local to the
accessing unit.

With regard to multi-GPU systems, extra care is required
to handle the situation of inter-device access when a global
pointer points to memory on a different device. Unit ID and
segment ID encoded in the global pointer provide essential
information to figure out which device the address actually
belongs to. The implementation details are discussed in section
[I-A2

Memory Allocation: In the DASH project, two kinds of
memory allocation are supported: local-global allocation and
team-aligned allocation. A local-global allocation returns a
global pointer to the allocated address in the global space,
which is local to the calling unit, and other units can access
the address through the pointer.

Team-aligned allocation allocates a memory segment in the
local space of each team member with the same size, and the
global pointer to the start address of the first unit is returned.
Given a global pointer returned by a team-aligned allocation
and an offset, global addresses in any team member’s address
space can be calculated by simple arithmetic. Therefore all
units can work on their local memories collectively. Since
the memory allocated by the team-aligned allocation spans
multiple devices, the address calculation is handled by the
runtime to generate the correct device address, which is
introduced in section [[II-A2]

Locality of reference: Each Unit is assigned to one device
at initialization, which means that a set of specific units are
local to the device in terms of memory hierarchy during the

life cycle of a DASH program. This affinity information is
maintained by the DART-CUDA runtime, according to which
calls to the DART allocation APIs can be transformed to
physical memory allocation requests to the devices local to
the units.

2) Implementation Details: DART Memory Segment: In
DART-CUDA, the establishment of a partitioned global ad-
dress space is done by all unit processes at the initialization
phase after a DASH program starts. Unit processes are created
by the root unit (unit 0). To start with, an array of segment
tables is created by the root unit in shared CPU memory. Each
segment table is itself an array of DART segment elements
and corresponds to one unit. A DART segment represents a
section of physical memory allocated in the global memory
of the associated device of a unit. The DART segments along
with the segment tables form the DART segment hierarchy, as
illustrated in Fig.

Shared CPU Memory

Device 1 Device 2

Table Array
Unit 0 [nit 1 |

Reséryed Device Memory,

" Resérved Oevice emary

Segment 0
..... [-Seamentd

Segment.0- e
Segme i A L __.-DeVice Memory

Device Memiory.

Fig. 1. DART Segment Hierarchy.

A DART segment element records essential information for
mapping a segment ID to the actual physical memory region
in the device memory, upon which dynamic allocations of the
PGAS memory are carried out. Listing [T] shows the complete
definition of the data structure.

Having the table array created at the root unit, each unit cre-
ates a segment for DART_TEAM_ALL as its default segment
and inserts it into the respective segment table of the unit.
The default segment acts like the heap memory of traditional
C programs. All local-global allocations take place in the
default segment of the calling unit. The size of the default
segment is given as a command line option. Further segments
are created and inserted into the segment tables for subsequent
team-aligned allocations during the program execution.

The segment structure plays an important role in deter-
mining the physical location of an address in the global
address space. Given a global pointer, a unit looks up the
corresponding segment table and converts the global pointer
to the device memory pointer by retrieving the owning unit
ID and its DART segment ID encoded in the global pointer.

Local-global allocations are carried out in the default seg-
ment (with segment ID 0) of the unit via a per-unit buddy
allocator, while a team-aligned allocation results in the cre-
ation of a new segment with a unique team Hﬂ as segment
ID in the segment structure and element subscript in the table

2In DASH, team ID does not need to be globally unique. However, if a
unit is part of several teams, all these teams will have different team IDs.

0 N U R W —

10
11
12
13

1

at each team member, so that segments of a specified team-
can be easily addressed by the team ID in the segment table’
of each team member, and each unit gets the global pointer ofs
its local part by simply setting the unit ID field in the returned’
head pointer. Thereby, the team-aligned space can be visiteds

as if it is continuous. 12

struct dart_segment

{

unsigned state;

void *base; 1
void ~end; 2
int dev_1ID; 3
int size; 4
int shmem_key; 5
cudalIpcMemHandle_t ipc_handle; 6
dart_team_t teamid; 7
dart_buddy_t *buddy;

unsigned buddy_block_size;

Listing 1. Data Structure of DART Segment.

Heterogeneous Memory Support: Based on the segment
table structure, the underlying physical memory that can be
managed by DART-CUDA is not limited to GPU DRAM. The
implementation separates the low-level platform-dependent
internal interfaces including segment management and physi-
cal memory access from the high-level platform-independent
DART interfaces. When a new platform is introduced, its
memory space can be integrated by realizing the low-level
interfaces and utilized by applications using the DART inter-
faces. In this version of DART-CUDA, shared CPU memory
is supported, which means the units can be mapped to GPU
devices or the host. By specifying the numbers of units
binding to the devices and the host respectively, a global space
combining CPU and GPU memories is then created.

Buddy Memory Allocation: The DART table array and
segment table realize the construction of a partitioned global
address space, based on which PGAS memory allocations are
carried out and managed by the runtime. The DART interfaces
currently support local-global and team-aligned allocation in
the global space. To overcome the external fragmentation
issue caused by the memory pool technique and improve the
memory utilization, a buddy memory allocation technique [8]]
is adopted. In DART-CUDA, the default segment of each unit
is managed by a standalone buddy memory system.

Memory Access: In DART-CUDA, the DART global
pointer is the only way to access the PGAS memory. As
introduced in section [[I} a global pointer is a 128-bit address
representation containing a unit id, a segment id and an offset.

The actual device address corresponding to a global pointer:
is not visible to DASH programs. Instead, after being returned
from the DART memory allocation interfaces, a global pointer
to the PGAS memory can be accessed by the DART one-sided
interfaces listed in Listing [2] which implement synchronous
and asynchronous get and put operations by specifying
the source and destination addresses in the private space of
processes. Handles returned by the asynchronous interfaces
can be waited and tested using interfaces in Listing [3]

/% blocking versions of one-sided communication operations

*/

dart_get_blocking(void xdest,
size_t nbytes);

dart_put_blocking(dart_gptr_t ptr,
size_t nbytes);

/# non-blocking versions returning a handle */

dart_get (void *dest, dart_gptr_t ptr, size_t nbytes,
dart_handle_t =*handle);

dart_put (dart_gptr_t ptr,
dart_handle_t xhandle);

dart_gptr_t ptr,

void «src,

void *src, size_t nbytes,

Listing 2. DART PGAS Memory Access Interfaces.

/* wait and test for the completion of a single handle */
dart_wait (dart_handle_t handle);
dart_test (dart_handle_t handle, int32_t xresult);
/+ wait and test for the completion of multiple handles =/
dart_waitall (dart_handle_t xhandle, size_t n);
dart_testall (dart_handle_t <handle, size_t n,

int32_t *result);

Listing 3. DART PGAS Memory Synchronization Interfaces.

Address Translation: To transfer data between the private
space of processes and the global space, the actual device
address of a given global pointer has to be determined by
the runtime. In DART-CUDA, it is done by three steps as
illustrated in Fig. 2]

Global Pointer Table Array
" Table 0 l Table 1 l
unitin:o 1
AN —~
Seg_ID: 1 Segment 0 Segment 0

Offset: 512

Segment1 {| Segment1

0 512 1024
Memory Segment on Device

Fig. 2. Translate Global Pointer to Device Pointer.

Firstly, the segment table of the owning unit is identi-
fied in the shared table array by the unit_id in the global
pointer. Then, the associated DART segment is located via
the segment_id, from which the target CUDA device and
the base address of the segment can be retrieved. Lastly, the
address offset is added to the base address to obtain the final
device address, which is then used to perform get and put
operations.

Address Manipulation: Manipulation of the team-aligned
global pointer needs to be specially handled by DART-CUDA
and an interface for incrementing global pointers has been
provided in DART, as shown in Listing[] The implementation
of this function is different from that in DART-SYSV due to
the existence of multiple devices and different memory layout.

dart_gptr_incaddr (dart_gptr_t =gptr, int offs);

Listing 4. DART Address Incrementing Interface.

When handling address increment requests, the runtime first
checks the segment field of the given pointer. If the segment
field is 0, which means the pointer points to the default
segment managing local-global allocations, the offset field of
the pointer is directly incremented by the offset.

The DART segment hierarchy provides a way to locate
team-aligned addresses to handle address increment for team-
aligned allocations. Given a team-aligned pointer, all team

segments can be accessed by visiting the element indexed by
encoded team ID in segment tables of ordered team units.
To compute a cross-unit address increment with a given
offset exceeding the boundary of current unit, the pointer
is firstly updated by incrementing the unit field in the team
order accordingly. Then the offset field is updated using the
remainder of the offset.

Asynchronous Memory Access: Asynchronous memory
access is supported in DART-CUDA by means of CUDA
streams. CUDA devices with Compute Capability 1.1 and
higher are capable of concurrent copy and execution, which
means the data transfer can be overlapped with the kernel
execution. For each PGAS memory access, the runtime creates
a new CUDA stream to execute a data transfer, and the created
stream with the corresponding device ID is encoded into a
handle, which is returned to the calling unit. The handle can
then be waited on or tested via interfaces in Listing [3] by the
unit. The host memory involved in the data transfer should
be pinned memory allocated via cudaMallocHost() for best
overlapping opportunities.

Optimization of Remote Access: When accessing a non-
local global pointer, a unit firstly locates the DART segment of
the owning unit, in which the IPC memory handle representing
the memory block of the segment is stored. Then, the accessing
unit opens the handle by calling cudalpcOpenMemHandle()
for GPU memory or shmat() for shared CPU memory to obtain
the mapped address in its private process space. The handle is
closed in the end as the data copy is finished to ensure that the
handle can be opened again in subsequent remote accesses.

To alleviate the overheads from opening and closing han-
dles, each unit maintains a hash table for opened handles. Each
hash item contains the handle identifier and the opened pointer
of the handle. Thus, repetitive accesses to a remote global
pointer will no longer involve multiple handle operations. The
overall performance of remote accesses is enhanced and the
performance gap between local and remote accesses is hence
narrowed down.

B. Execution Model

CUDA adopts a kernel-based programming model to utilize
computational and memory resources of GPU devices. Com-
monly, kernels are called synchronously or asynchronously by
CPU codes. However, when there are multiple devices used
by PGAS applications, straightforwardly launching kernels by
multiple process elements at the same time on one or more
GPU devices could be problematic, and could cause per-
formance issues (overheads from CUDA context switching).
Extra care is required to manage task creation and manage-
ment, to facilitate scheduling tasks to appropriate devices and
balancing uneven workload distribution so that GPU devices
can be utilized in a unified and efficient way. A tasking API
called TaskAPI is proposed as an execution model extension
to the DASH programming model. It supports both CPU and
GPU tasks. Tasks created by TaskAPI are managed by the
runtime of DART-CUDA, and can be manipulated by units

via task handles returned by TaskAPI. Both synchronous and
asynchronous tasks are supported in this implementation.

TaskAPI covers the essential operations on tasks including
synchronous and asynchronous task creation, blocking wait
on tasks, non-blocking test for task completion and task
cancellation. When creating a task via dart_tapi_task_create(),
the pointer to a CPU function or a CUDA kernel to be executed
has to be specified. Global pointers in and out and the size
of the input and output data are also required to tell the
runtime how to access input and output parameters. Besides
the basic tasking functionality, advanced features including
load balancing and overlap of data transfer and execution are
implemented inside the DART runtime. Notably, only tasks
created by TaskAPI are managed by the DART runtime. If the
kernel function is launched by units directly rather than by
TaskAPI, its execution will not be managed.

TaskAPI complements the original execution model of
DART-SYSV with task parallelism and essential tasking func-
tions. However, the peculiarity of the GPU architecture and the
GPGPU programming model requires supplementary compo-
nents to make the new model possible.

1) Task Representation: In DART-CUDA, GPU tasks are
implemented on the basis of kernel functions. However, device
memory used by a kernel functions is not visible to DASH
programs due to the abstraction of the PGAS memory model,
and unit processes have no knowledge about which device
their data reside in. It is thus not feasible that unit processes
interact with CUDA devices and device memories directly. In-
stead, tasks are created as DART task items and then delegated
to the DART-CUDA runtime for scheduling and launching,
which requires extra information to enable access to PGAS
memory that can be accessed only by DART global pointers,
to locate target device and to specify execution configurations
of the launching kernel.

2) Overlapping of Data Transfers and Computation:
NVIDIA GPU chips of the Kepler Microarchitecture have the
capability of 2-way or 3-way concurrency depending on the
device model. Copy operations can be overlapped with kernels
running on different steams. This characteristic enables the
overlapping of data transfers and computing. DART-CUDA
takes advantage of this by creating new streams for all kernel
execution and reserving dedicated streams on each device for
data operations like data transfer, data migration and result
write-back. In this way, it is ensured that data operations are
always overlapped with running kernels on devices. These
streams are stored in the task handle structure so that all
stream-related operations can be carried out by the unit process
owning the task handle.

3) TaskAPI Process Model: In the shared memory version
of DART, a DASH application begins with forking a specified
amount of unit processes to establish a SPMD process model.
DART-CUDA extends this model by adding one more TaskAPI
runtime process to facilitate the proposed tasking functions.
The runtime process is forked from the root unit process after
all unit processes are ready, which means the address space of
the runtime process is identical with that of all others. In this

way, the task function pointers representing kernel functions or
CPU functions remain valid in the address space of the runtime
process and can be dereferenced correctly. The runtime process
also creates a series of functional threads to implement features
like scheduling, kernel launching and load balancing. A shared
area keeping task information and task queues is allocated
in shared CPU memory so that unit processes can enqueue
created tasks and communicate with the runtime process.

4) Queuing and Scheduling: To coordinate task execution
and achieve better performance in a multi-GPU environment,
DART-CUDA implements queuing and scheduling function-
ality. Started tasks are not launched on devices all at once.
Instead, they are enqueued into task queues with different
priorities and scheduled by the runtime. Furthermore, the
workloads of devices are monitored, and tasks without data
affinity can be scheduled to idle devices to improve overall
utilization.

In DART-CUDA, FIFO queues are employed to manage
started tasks. Fig. 3] shows the design of the queuing system.
Sync Task Queue and Async Task Queue are two
main queues for blocking and non-blocking tasks. Each device
is associated with a Dev Queue for tasks scheduled from the
main queues by the runtime. All task items are retrieved via
their task handles stored in the task pool.

| Sync Task Queue Async Task Queue
E eu
| | |
| &)
| Task Handle Pool
| | ——— | \9/
\E /
| V
|
|
|
Dey/Qur;ur; 1 Dev Queue 2
V2 /
Fig. 3. Queuing and Scheduling in DART-CUDA.

Task items of all started tasks are firstly enqueued into the
main queues. The two main task queues reside in a CPU
shared memory area and are used to queue synchronous and
asynchronous task respectively. Since the main task queues are
accessed by multiple unit processes, pthread mutex locks are
used to avoid race conditions. When starting a task, the unit
process acquires the lock of the main queues and pushes the
task item in when the lock is released. Device task queues re-
side in device-mapped memory allocated via cudaHostAlloc().
A daemon scheduler thread created by the TaskAPI runtime
process at program startup continuously polls the main queues
and schedules tasks to proper device queues. Sync Task
Queue has a higher priority than Async Task Queue by
design to ensure lower latency for synchronous tasks.

As shown in Fig. [3] the base pointer of a task handle is

changed as soon as a task is scheduled to a device queue, and
the task handle pointer of a task item always points to the
unique task handle in the task handle pool. Therefore, even if
a task that has been started is scheduled to a device queue or
is migrated (described in section [[II-B6), the system is able to
cancel or wait for the task execution via streams stored in the
unique task handle in the task handle pool.

5) Task Launching: In a normal CUDA program, kernels
are launched on-demand with execution configurations speci-
fied and target CUDA device set up, and the CUDA runtime
is responsible for executing the kernels on the device, whereas
in DART-CUDA kernel functions and execution configurations
are stored in task items, and the device selection should be
handled based on information stored in task items automati-
cally.

Apart from the scheduler thread in charge of dispatching
tasks from the main queues to the device queues, multiple
kernel launcher threads are created to extract information
essential to kernel launch from task items and prepare CUDA
devices. Each kernel launcher thread corresponds to one device
and takes task items dequeued from the device queue. Data
pointers and necessary arguments like execution configurations
required for kernel launch are fetched from the task item.
Finally, the launcher switches the CUDA runtime to the device
specified by the task item and launches the task kernel by
dereferencing the kernel function pointer with prepared data
pointers and arguments.

To support synchronization of task execution, a new CUDA
stream is created prior to launching each task kernel, with
which the kernel is executed on the device. The stream is
then written into the task handle so that the application can
wait for the kernel execution later on.

6) Load Balancing: The aforementioned concept of DASH
teams and the programming model derived from it make it easy
to exploit computational resources with hierarchical locality,
but may lead to imbalanced workload distribution.

To overcome potential workload imbalance, a load balanc-
ing thread monitors all device task queues throughout the
lifetime of a DASH application. As it detects that the task
queue of some device becomes empty, it attempts to steal a
task item from the task queue of the busiest device to the idle
device with vacant task queue and migrate the task data.

First, temporary task memory is reserved by allocating ad-
hoc memory space on the idle device for both input and output
data, which is outside the PGAS memory. Afterwards, the
input data is copied from the original device to the ad-hoc
memory on the idle device. At last, device pointers for input
and output data encoded in the task item are accordingly
changed. The data copy is asynchronous and carries out on
a dedicated data stream, which can be examined by the task
handle of the task item. The kernel execution will wait on the
data migration process to ensure the validity of the task data.

The task migration involves two steps. Firstly, the task item
is dequeued from the device queue of the busy device and
pushed into the device queue of the idle device. The second
step creates a write-back task on the idle device. When a kernel

launcher performs a write-back task, result data will be written
back to the original place after the task completes to make
sure the subsequent tasks working on the result can proceed
seamlessly.

IV. EVALUATION

The implemented PGAS memory component and TaskAPI
component for multi-GPU systems have been integrated into
the DART-CUDA prototype based on the latest CUDA 6.5
toolkit and DART-SYSV 1.0. A two-GPU test system is
constructed with an Intel i5-750 quad-core processor running
at 3.3 GHz, 8 GB RAM and two NVidia GTX 750 Ti graphic
cards, each of which has 640 CUDA cores and 2 GB on-
board DRAM. The devices are connected to the system via
one PClIe 2.0 x16 interface with a theoretical bandwidth of 8
GB/s and one 4 GB/s PCIe 1.0 x16 interface. The system runs
Linux 3.15 with NVidia Driver 340 and CUDA 6.5 runtime
installed.

A. Micro-Benchmarks

1) Methodology: Five micro-benchmarks have been de-
signed and tested to measure the performance and overheads of
the DART-CUDA library and CUDA runtime. Different unit
configurations are applied to show the performance penalty
caused by concurrent operations. In tests with more than two
units, the two GPU devices are assigned to units in a round-
robin way (1%¢ unit with GPUy, 274 ynit with GPU,, 37% unit
with GPU, etc.).

2) Results of Memory Allocation Functions: Fig.[d]presents
the results of the micro-benchmark of dart_memalloc() (a
local-global allocation). For each unit configuration, memory
areas with increasing sizes with a stepping of 40,000 bytes
are allocated at each unit in its default segment (segment|0]).
The X axis is logarithmic scaled. As can been seen, the time
latency remains almost identical for tests with 1 to 4 units
at all data sizes, and gets larger for cases with more than 4
units proportional to the unit amount. It can also be concluded
that, as the allocating size increases, the time cost decreases
constantly and keeps steady in the intervals of every two 2"
numbers for tests with 1 to 4 units.

7e-07 T T T T T

T
1 Unit —o—
2 Units
4 Units —&— 7]
8 Units
16 Units -

6e-07 -

5e-07 -

4e-07

T

3e-07

T
L

Time (Sec)

2e-07 - —

1e-07 | "= N——

0 1 1 1 1 1 1
32 64 128 256 512 1024 2048 4096

Size of memory allocated at each unit (KB)

Fig. 4. Latency of Local-Global Allocation.

The trends reflect the characteristic of the buddy memory
allocator as expected. If an allocation has a size of power of 2,
the allocator always finds a suitable block within logy n steps

so long as it is available. The overall performance approaches
a constant as the size increases, which explains the stepped
lines presented in Fig. [Since dart_memalloc() does not
allocate physical memory directly but performs the allocation
algorithm in reserved memory area managed by the buddy
allocator, the numerical values of all tests are relatively small
with a magnitude of 1 x 107°. Lastly, tests with 1 to 4 units
in both groups produce the same latencies because each unit
has its own buddy allocator in its private process space, and
the test system equipped a quad-core CPU, which means up
to four processes can be executed with genuine concurrency,
and no communication and synchronization is involved during
the procedure. For tests with more than 4 units, executions on
the CPU are interleaved by multiple processes, which leads to
larger latencies on average.

0.0035 T T T T T T T T T

0.003

0.0025

0.002

Time (Sec)

0.0015

0.001

0.0005

s
0
0 100 200 300 400 500 600 700 800 900 1000

Size of memory allocated at each unit (KB)

1Unit —— 2 Units —%— 4 Units —%— 8 Units 16 Units ——

Fig. 5. Latency of Team-Aligned Allocation.

The benchmark result of function
dart_team_memalloc_aligned() is shown in Fig. El In this
experiment, all member units call the function collectively
and create a team-aligned memory segment. In all unit
configurations, the latency increases steadily with a small
slope, and has a leap at 530 KB altogether. The latency
values are about 1 x 10~2 second, which is about three
orders of magnitude greater than those of dart_memalloc().
The first explanation is that the function is implemented by
invoking CUDA API and allocating GPU DRAM directly,
and underlying hardware operations are involved. Secondly,
team operations require waiting on locks of synchronized
team structures, and cases with more than one unit all suffer
performance deterioration regardless of the concurrency
provided by the multi-core CPU.

Fig. [f] further explores the performance trends of native
CUDA allocation API and compares them with those of the
DART interface. As shown in Fig. [6(a)] the two libraries pro-
vide similar performance trends under a 4-unit configuration,
and the overhead introduced by DART-CUDA remains stable,
while in a high concurrency scenario with 16 units shown in
Fig.[6(b)] the native CUDA API outperforms at small sizes and
gets close to DART for large size tests. It can also be inferred
that the steep increase at 530 KB is due to the CUDA library
and runtime since all four lines show the same change.

3) Results of Memory Access Functions: Fig. []) illustrates
the micro-benchmarks of blocking get and put operations.
The test involves two units serially accessing a global pointer

0.001 T T T T T T T T T
0.0009
0.0008
0.0007
0.0006
0.0005
0.0004
0.0003
0.0002 |- —

0.0001 |- B
0 L L L L L L L L L
0 100 200 300 400 500 600 700 800 900

Size of memory allocated at each unit (KB)

Time (Sec)

1000

4 Units —%— 4 Units - CUDA

(a) Test with 4 Units

Fig. 6.

allocated at the first unit. Since the pointer is local to the
first unit, its access to the pointer is local and the second unit
accesses the pointer remotely. The optimized version of remote
access is measured here. Slight performance gaps between
local accesses and remote accesses can be observed, which are
mostly due to the bandwidth difference between intra-device
and inter-device communications.

4000

M j\N‘ﬂLFVAZ\Z\l‘T\/"‘:&T‘f

3500

3000

2500

2000

Speed (MB/Sec)

1500 [

1000 -
local get —+—

local put —<—
remote get optimized 7
rerlnote put ?pt]mizedI ——

500 [

0 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900

Size of accessed data (KB)

1000

Fig. 7. Performance of Local and Optimized Remote Access.

B. Case Study

Three study cases have been developed to demonstrate the
usage of TaskAPI provided by DART-CUDA and to evaluate
the programmability of the model compared to the common
parallel programming models. In the first example, a conven-
tional MPI-based five-point stencil code is rewritten into a
DASH program taking advantage of global memory access
and tasking mechanism to show the programmability of the
GPU tasking model. It replaces two-sided MPI communication
with one-sided PGAS global memory access and delegates
decomposed stencil computing tasks to managed GPU de-
vices. The second case further revises the stencil code by
distributing stencil computing on both CPU and GPU devices
to demonstrate how DART-CUDA can exploit both storage
and computing resources of a CPU-GPU system. The last one
creates a imbalanced workload scenario and demonstrates the
effectiveness of the load balancing mechanism.

1) Results: 100 stencil iterations are carried out for each
test to get the average duration of one iteration. The CPU
implementation involves four units. For GPU tests two units
are created, each one corresponding to one GPU device. The

0.0035 T T T T T

0.003

0.0025 - 4

0.002 B

Time (Sec)

0.0015 |- —

0.001 B

0.0005 |- —

0 ! ! ! ! ! ! ! ! !
0 100 200 300 400 500 600 700 800 900

Size of memory allocated at each unit (KB)

1000

16 Units —%— 16 Units - CUDA

(b) Test with 16 Units

Comparison of DART Team Aligned Allocation and CUDA Allocation.

total elapsed time is gathered from each synchronized iteration.
Fig. [8] shows the elapsed time of one stencil iteration of GPU
based and CPU based implementation on 2-D five point stencil
problems with increasing sizes. When the problem scale is
smaller than 4000 x 4000, the CPU implementation prevails
since the performance gain from GPUs does not compensate
the cost of kernel launch on GPUs and inter-device data
transfer. As the problem size increases, the elapsed time of
CPU implementation grows exponentially, while the GPU
implementation outperforms and the speed ratio grows up to
42 times as shown in Fig. 0]

6 T T T T T T

5L

Elapsed Time of One Iteration (Sec)
w
T

0 2000 4000 6000 8000 10000 12000

Size of One Dimension

14000
GPU —+—CPU —%—

Fig. 8. Performance of 2-D Stencil Code on CPU and GPU.

45 T T

40 |-

35
7 30F
£
S 25
Q
3 20
9
& 151

10

5|

0 3 1 1 1 1

0 2000 4000 6000 8000 10000 12000 14000
Size of One Dimension
Speedup —¥—
Fig. 9. Speedup between CPU and GPU.

Due to limited memory capacity, problems with size larger
than 14000 x 14000 can not be tested on the system. To
obtain the performance trend of the GPU implementation,
simulation tests are performed for problems with sizes larger
than 14000, in which only the computation is executed and

measured without memory operations and data exchanges. To
help understand the composition of the latency, the overhead
of kernel launch on the devices is also measured by launch-
ing void kernels with execution configuration matching the
problem scale. Fig. [I0] shows the results of the estimation.
The red line represents the time consuming estimation for
large problems, indicating that the GPU implementation also
has a quadratic growth starting from circa 15000, while the
green line stands for the overhead part of the total elapse,
which also shows a stepped quadratic growth with small factor.
The quadratic growth is not observed in the interval from 0
to 15000 for two reasons. Firstly, the latency of devices to
launch a small number of kernels for small problems results
in a minimal overhead that dominates the elapsed time, by
which the theoretical quadratic growth is weakened to a nearly
linear increase. As the problems become larger, the proportion
of the overhead gradually reduces and the quadratic part
becomes more and more significant. The second reason is that
the massive concurrency of GPU devices hides the expected
growth for problems too small to utilize all device resources.

1.8

1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

Estimated Time of One Iteration (Sec)

1 1
100000 150000
Size of One Dimension

0 50000 20000C

Estimation —+— Overhead of Kernel Launch —%—

Fig. 10. Estimation of Large Size Problems.

The results of CPU-GPU cooperative approach is illustrated
in Fig. [T1] By involving four CPU units and two GPU units
simultaneously, the overall performance of the CPU-GPU
approach is effectively improved for tests of size larger than
13000, comparing to the CPU-only approach. The speedup has
a steady increase and approaches 2.15 at size 20000.

16

14

12

Elapsed Time of One Iteration (Sec)
o

0
12000 13000 14000 15000 16000 17000

Size of One Dimension

18000 19000 20000

CPU+GPU —+— CPU —%—

Fig. 11. Performance of CPU-GPU Cooperative 2-D Stencil Code.

Fig. [12] presents the cost for exchanging boundary elements
of the two approaches. Due to the bandwidth limit posed
by the system bus and PCle interfaces, memory accesses
between CPU and GPU or two GPUs result in 20 to 24 times

larger latencies than that of accesses within CPU memory,
which grow linearly with the increase of size. Combining the
results of Fig.[I2] and Fig. [IT] the performance benefit is still
considerable in spite of the relatively high data transfer cost.

0.18 T T T T T T T T

0.16 - - : - . - -4 - - . -
0.14 |- - : -t - . = . -~ - -
012 -
0.1
0.08 |-
0.06 -
0.04 -
0.02 |-

Time of Edge Transfers per Iteration (Sec)

12000 13000 14000 15000 16000 17000

Size of One Dimension

18000 19000 20000

CPU+GPU =3 CPU =3

Fig. 12. Cost of Inter-Unit Boundary Exchange.

In the load balancing test, one CPU unit is launched with
different granularity of task decomposition (5-way, 10-way and
20-way). Since the two GPU devices are idle at the beginning,
the load balancer intermittently migrates the decomposed sub-
tasks and their data from the CPU queue to the queues of
GPUs, and writes back results produced by the migrated sub-
tasks. Since the data migration and write-back procedures
cause considerable overhead, the overall performance does
not benefit from the load balancing for cases smaller than
8000, as shown in Fig. [I[3] For larger cases, the performance
gain from the GPUs grows big enough to countervail the
overhead and accelerate the overall computing up to 25%.
In addition, the decomposition granularity is an important
factor. It can be seen that 5-way decomposition results in
the lowest performance loss in tests smaller than 8000, but
also the smallest performance boost in large tests, and is
outperformed by 10-way and 20-way decomposition as the
problem size increases. Lastly, it can be expected that, tasks
requiring smaller data and more computation are preferable to
be migrated because they lead to lower overhead and higher
gains from accelerators like GPUs. Therefore, the strategy of
load balancing can be improved by evaluating relevant task
information and maximizing the performance gain.

Elapsed Time of One Iteration (Sec)

0 2000 4000 6000 8000
Size of One Dimension

10000 12000

Without Load Balancing —+— 5-way Decomposition —¥—
10-way Decomposition —%— 20-way Decomposition

Fig. 13.
sition.

CPU Stencil Code with GPU Load Balancing via Task Decompo-

V. RELATED WORK

Recently, there has been some attention focused on im-
plementing PGAS models on GPU platforms. Jacobsen et
al. constructed a heterogeneous cluster within which each
node equipped with multiple GPUs [7], and developed an
application for flow computation employing a mixed MPI-
CUDA implementation.

In [10]], Zheng et al. gave an overview of the effort extending
UPC for GPU computing in a PGAS programming model.
The concept of a hybrid partitioned global address space was
proposed, in which each thread has only one shared segment
either in host memory or in GPU memory. The extension is
backward compatible with current UPC and CUDA/OpenCL
programs and takes advantage of one-sided communication
in UPC. The UPC runtime was extended to manage shared
heap on GPU devices. GASNet was accordingly modified to
facilitate one-sided communication on GPU by introducing
GPU task queue and Active Message.

Similarly, Chen et al. extended UPC to GPU clusters with
hierarchical data distribution and augmented the compiler im-
plementation [3]]. The execution model of UPC was revised by
combining SPMD with fork-join model. The compiling system
was implemented with several memory optimizations targeting
NVIDIA CUDA like affinity-aware loop tiling transformation
and array reuse degree. Unified data management eliminates
redundant data transfer and data layout transformation at
runtime.

In [9], Lee et al. extended the XcalableMP PGAS Lan-
guage to GPGPU and supported multi-node GPU clusters. It
adopted an OpenMP-like directive based programming model
to minimize the need of modification, and the compiler was
correspondingly modified to add support for CUDA compiler.

Garland et al. introduced Phalanx in [6], a unified pro-
gramming model for heterogeneous systems with a proto-
type implementation supporting CUDA for many-core GPUs,
OpenMP for multi-core CPUs and GASNet for clusters. The
model assumes distributed hybrid machines with heteroge-
neous collections of processors and hierarchal memory. A
correspondingly optimized task model was designed to support
multi-thread tasks with hierarchal organizations on the basis
of a PGAS-like memory model. By means of templates and
generic functions, the model was realized in the form of a C++
library, which avoids the need for extra compiler supports and
meanwhile keeps good interoperability with legacy code.

VI. CONCLUSION

As a novel programming model and promising solution to
massively parallel computing, the PGAS programming model
achieves a balance between the scalability, the performance
and the programming productivity. This work extends the
PGAS concept to the thriving GPGPU platform in terms
of two aspects. Firstly, A memory model specialized for
multi-GPU systems is proposed. The implementation of the
model is compatible with GPU memory and CPU memory,
and supports the combined usage of both CPUs and GPUs.
Second, a new execution model is proposed to exploit data

parallelism of single GPU devices and explore task parallelism
of multiple devices. The TaskAPI implements this model and
provides a productive approach to creating and performing
platform-specific tasks without the need of interacting with
the underlying hardware.

The performance of the memory access of the PGAS
model is evaluated via several micro-benchmarks. The buddy
allocator delivers much lower latency than direct allocation
via CUDA APIs. With regards to memory access speed, the
implementation shows promising performance and acceptable
overheads compared to the performance of CUDA runtime.
The study cases present the application of TaskAPI. Compar-
ing to the traditional MPI model, TaskAPI provides better pro-
grammability with performance boost from data parallelism.
A CPU-GPU cooperative application is explored to attest
the feasibility of writing PGAS codes with a multi-platform
programming model in a hybrid system. The effectiveness of
the load balancing mechanism is also verified in the scenario
of imbalanced workload distribution.

ACKNOWLEDGMENT

We gratefully acknowledge funding by the German Re-
search Foundation (DFG) through the German Priority Pro-
gramme 1648 Software for Exascale Computing (SPPEXA).

REFERENCES

[1] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. Parallel
programmability and the Chapel language. International Journal of High
Performance Computing Applications, 21:291-312, August 2007.

[2] Barbara Chapman, Tony Curtis, Swaroop Pophale, Stephen Poole, Jeff
Kuehn, Chuck Koelbel, and Lauren Smith. Introducing OpenSHMEM:
SHMEM for the PGAS community. In Proceedings of the Fourth
Conference on Partitioned Global Address Space Programming Model,
PGAS ’10, New York, NY, USA, 2010. ACM.

[3] Li Chen, Lei Liu, Shenglin Tang, Lei Huang, Zheng Jing, Shixiong
Xu, Dingfei Zhang, and Baojiang Shou. Unified parallel ¢ for gpu
clusters: Language extensions and compiler implementation. pages 151—
165, 2011.

[4] UPC Consortium. UPC language specification v1.2.
Technical Report, Lawrence Berkeley National Laboratory.

[5] Karl Fiirlinger, Colin Glass, Jose Gracia, Andreas Kniipfer, Jie Tao,
Denis Hiinich, Kamran Idrees, Matthias Maiterth, Yousri Mhedheb, and
Huan Zhou. DASH: Data structures and algorithms with support for
hierarchical locality. In Euro-Par Workshops, 2014.

[6] Michael Garland, Manjunath Kudlur, and Yili Zheng. Designing a
unified programming model for heterogeneous machines. International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC, 2012.

[7] Dana A Jacobsen, Julien C Thibault, and Inanc Senocak. An mpi-cuda
implementation for massively parallel incompressible flow computations
on multi-gpu clusters. 16, 2010.

[8] Kenneth C Knowlton. A fast storage allocator. Communications of the
ACM, 8(10):623-624, 1965.

[9] Jinpil Lee, Minh Tuan Tran, Tetsuya Odajima, Taisuke Boku, and

Mitsuhisa Sato. An extension of XcalableMP PGAS lanaguage for multi-

node gpu clusters. pages 429-439, 2012.

Yili Zheng, Costin Iancu, Paul Hargrove, Seung-Jai Min, and Katherine

Yelick. Extending unified parallel C for GPU computing. In SIAM

conference on parallel processing for scientific computing, 2010.

Huan Zhou, Yousri Mhedheb, Kamran Idrees, Colin Glass, Jose Gracia,

Karl Fiirlinger, and Jie Tao. In The 8th International Conference

on Partitioned Global Address Space Programming Models (PGAS),

October 2014.

June 2005.

(10]

(11]

	Introduction
	DASH and DART
	Design and Implementation of DART-CUDA
	Memory Model
	Challenges
	Implementation Details

	Execution Model
	Task Representation
	Overlapping of Data Transfers and Computation
	TaskAPI Process Model
	Queuing and Scheduling
	Task Launching
	Load Balancing

	Evaluation
	Micro-Benchmarks
	Methodology
	Results of Memory Allocation Functions
	Results of Memory Access Functions

	Case Study
	Results

	Related Work
	Conclusion
	References

