
A Performance Study of Virtual Machines on Multicore Architectures

Jie Tao1, Karl Fürlinger2, Lizhe Wang3, and Holger Marten1

1Steinbuch Center for Computing, Karlsruhe Institute of Technology, Germany
2Department of Computer Science, Ludwig-Maximilians-Universität München, Germany
3Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, China

jie.tao@kit.edu, fuerling@nm.ifi.lmu.de, Lizhe.Wang@gmail.com, Holger.Marten@kit.edu

Abstract

Cloud computing has promoted the widespread use of
virtualized machines. A question arises: How does vir-
tualization influence the performance of running applica-
tions? The answer must be a common interest of applica-
tion developers and users. This paper describes the results
of our performance evaluation on a virtualized multicore
machine. We tested a set of benchmark applications and
detected some general features that should be considered
when running applications on a virtualized multicore ma-
chine. We also studied the application execution behavior
using profiling tools. We found the reason for unexpectedly
poor performance of an OpenMP application in a virtual-
ized setting and optimized the program. The optimization
resulted in a significant performance gain.

1 Introduction

Cloud computing is currently a hot topic. Increasingly
established Cloud platforms are attracting more and more
users to develop or port their applications. A specific fea-
ture of Clouds is on-demand resource provisioning, which is
enabled by the virtual machine technology. As Clouds show
the benefit of virtualization, the use of virtual machines is
widened to a variety of areas.

Computer architecture, on the other hand, is entering a
new era. The design of microprocessors has been moved
from single core to multicore (or manycore) and it is clear
that emerging computing systems on all scales will be based
on multicore nodes. This also means that the virtualized
machines will be multicore machines in the future.

Virtualization changes the applications execution behav-
ior because the operating system now runs on top of a vir-
tualization layer rather than directly on the hardware of the
host . It is commonly assumed that virtualization introduces
a performance loss, especially for parallel applications. A
comprehensive view of the performance issue on a virtual-
ized multicore, however, is still a research topic.

This work aims at giving a performance study and anal-
ysis to tackle this research problem. We used performance
tools and standard benchmark suites to understand the run-
time behavior of a virtualized multicore machine, running
in both a multi-programming and a shared memory paral-
lel execution mode. During the study we detected several
general rules, which can guide the programmers in the task
of application development on virtual machines. We also
studied the cause of unexpected behavior with an OpenMP
application and optimized its code based on the detected
problem. The optimization considerably improved the per-
formance of this application.

The remainder of the paper is organized as follows. Sec-
tion 2 gives a short introduction to the virtualization tech-
nology and the related work. Section 3 shows the initial
experimental results and gives the details of performance
analysis as well as the achieved optimization results. The
paper concludes in Section 4 with a short summary and sev-
eral future directions.

2 The Virtualization Technology

The virtualization technology was proposed in the late
1950s. A wide use of this technology was in the 70s
with the purpose of running different application formats
on the same hardware to increase the utilization of expen-
sive computing resources. In the 90s, microcomputers were
widely adopted to build client-server and peer-to-peer sys-
tems. These new computing environments brought with
them several problems including security and increased ad-
ministration complexity. As a solution, virtualization was
applied [8] and became thereafter a hot topic.

A traditional computer system runs applications directly
on the complete physical machine. Using virtualization, ap-
plications are executed on virtual machines (VM), with each
VM typically running a single application and a different
operating system. Users benefit from this execution model
in the following aspects:

∙ On-demand OS and resource customization: the virtu-

2012 20th Euromicro International Conference on Parallel, Distributed and Network-based Processing

978-0-7695-4633-9/12 $26.00 © 2012 IEEE

DOI 10.1109/PDP.2012.77

89

alization techniques allow the user to create a VM that
provides a customized operating system and resource
allocation.

∙ Performance isolation: the VMs are completely iso-
lated from each other, as if they were separated physi-
cal machines.

∙ Security: the host system monitors the communication
to the VMs, restricting the number of successful at-
tacks.

∙ Availability: VMs can be easily migrated increasing
the system’s fault tolerance and availability.

These advantages widened the application area of the
virtualization technology. Today, virtualization is widely
used for server consolidation [21]. In this use case, dif-
ferent servers, like Web, application, and database servers,
run on the same physical hardware but with separate VMs.
The servers run safely on the shared hardware and can be
migrated transparently, increasing server utilization, relia-
bility, and availability while reducing the overall number
of physical systems and related recurring costs. Grid com-
puting uses virtualization to achieve interoperability and in-
teroperation between different grid infrastructures [17], to
gain administrative flexibility [7], and also to benefit from
the traditional advantages of the virtualization technology
[17]. Cloud computing adopts virtualization as a key tech-
nology to provide on-demand computing resources. Exist-
ing cloud infrastructures, including the Amazon EC2 [1],
OpenNebula [19], and Eucalyptus [15], all use the virtual
machine technology to provide Infrastructure as a Service
(IaaS). Resource centers tend to be fully virtualized in or-
der to enhance the resource availability and to reduce the
administration cost.

The 1970s simply used binary transformation to run dif-
ferent code on an existing system. A comprehensive ma-
chine virtualization started in the 90s with a virtualization
layer between the hardware and the guest operating sys-
tems. This layer is called Virtual Machine Monitor (VMM)
or hypervisor [16]. Xen [2], VMware [22], and KVM [13]
are three well known and widely used hypervisors. Xen
is an open source development and is widely used for re-
search purposes. KVM is also an open source product. It
adds the virtualization capacities directly in the Linux ker-
nel, achieving the thinnest hypervisor of only a few hundred
thousand lines of code. VMware is a commercial product
and used mainly for server consolidation.

The hypervisor’s main task is to virtualize the memory,
the devices, and the processor. Memory virtualization aims
at mapping the physical memory of a VM to the actual ma-
chine memory. Device virtualization makes sure that each
VM acquires a virtual device. Processor virtualization takes
care of sensitive instructions, such as privileged instructions

and exceptions, which cannot be executed directly because
with a virtualization layer the operating systems run now at
a lower privileged level. One solution is para-virtualization
that deploys hypercalls to communicate with the hypervi-
sor. The OS kernel has to be slightly modified to replace the
sensitive instructions with hypercalls. The other approach is
full virtualization which translates the sensitive instructions
to a new sequence of instructions for the virtualized hard-
ware without changing the OS running on a virtual machine.

Clearly, virtualization introduces overhead which results
in a performance loss when applications run on a VM rather
than directly on the physical machine. This issue was not
the focus of interest in the 90s because virtualization was
primarily used for the reason of security and system man-
agement. Today, however, scientific applications are run-
ning on virtualized machines, performance of virtualized
machines becomes therefore a research topic.

The Xen developers evaluated their hypervisor, together
with VMware and User Mode Linux [4], using several large
applications. The results showed that all three hypervi-
sors introduced a significant slowdown with database and
web applications [2]. Developers of the ATLAS experi-
ments also measured an up to 14% runtime overhead of
VMware ESX with compute-intensive simulation applica-
tions in High Energy Physics [10].

For parallel execution Ibrahim, Hofmeyr, and Iancu [11]
studied the performance of the NAS parallel benchmarks
on VMs runing on a NUMA system. Their experimental re-
sults depicted an average performance degradation of 55%,
which is caused by poor memory locality management of
the underlying hypervisor. Evangelinos and Hill [6] studied
the MPI performance on virtual machines. For this study
they built a virtual cluster on top of the Amazon EC2 and
tested a set of MPI implementations including OpenMPI,
GridMPI, LAM and MPICH-2. The results showed quite
poor latency and bandwidth performance. In all cases, the
message latency is more than double of that measured on
a physical, gigabit based cluster, and the asymptotic band-
width is only a half. Similarly, Ekanayake and Fox mea-
sured the MPI runtimes [5] and reported a slowdown of 10%
to 40%. Another test [23] showed an even worse perfor-
mance. Jackson et al. [12] analyzed the HPC applications
and found a substantial slowdown compared to dedicated
clusters and HPC systems depending on the communication
characteristics of the tested application.

In summary, the performance of applications running on
VMs has been studied before. However, existing studies tar-
geted on either single processor machines or virtual clusters.
The performance of VMs on multicore is not well investi-
gated and a complete performance study with various paral-
lel benchmarks is not available. The goal of this work is to
give a comprehensive performance evaluation of virtualized
multicore machines. For this purpose we built a testbed with

90

an 8-core machine virtualized by the open source Xen. We
studied the performance of applications in several standard
benchmark suites.

3 Performance: Physical vs. Virtual

A virtualized multicore machine can be used to run
several applications simultaneously, each on an individual
single-core VM. This execution mode maintains the feature
of performance isolation of virtual machines. The other ex-
ecution mode is to run a shared memory parallel applica-
tion, like a traditional multicore machine usually does. In
this case, a VM with several cores is needed. We study both
scenarios.

For the experiments, we first created two virtual ma-
chines, a fully virtualized VM called VM-full and a para-
virtualized VM called VM-para. We then cloned the VM-
full and created another seven VMs for running multiple ap-
plications. Each VM is equipped with 1-8 processing cores
and an up to 4 GB memory. The operating system running
on the VMs is Debian 2.6.26. The physical machine has
two 2.3 GHz Quad-Core AMD Opteron 2376 (“Shanghai”)
processors and runs Scientific Linux 5.5.

The applications for the test were chosen from the NAS
(NPB2.3-omp-C) and SPEC OpenMP benchmark suites.
We also selected two applications from the OpenMP Source
Code Repository [18]. One is the program MolecularDy-
namics (MD) which implements a simple molecular dy-
namics simulation using the velocity Verlet time integra-
tion scheme [20] and the other is the Mandelbrot program
that computes an estimation to the Mandelbrot Set area us-
ing MonteCarlo sampling. All applications were compiled
with gcc 4.3.2. The gcc compiler supports OpenMP since
version 4.2. The NAS applications were compiled with a
data size of class A, while the SPEC applications were ex-
ecuted using the reference data set. MD was executed with
16384 particles and 20 simulation steps, while the number
of points in the Mandelbrot set was 1048576. The param-
eters for these two applications were specifically chosen to
balance the execution time.

3.1 Multi-programming Performance

The first experiment was done for the multi-
programming execution mode. In this test eight ap-
plications were executed once on the physical machine and
once on the eight VMs with each application running on
a separate VM. We compared the execution time of each
application in both cases.

Figure 1 depicts the experimental results. For a better
observation the SPEC applications are presented in a single
diagram (the lower one) due to their long execution time.
The execution time of each application is presented in two

Figure 1. Simultaneous execution of eight ap-
plications on the host machine and the virtual
machines.

bars with the left for the native execution on the host and
the right for VM runs.

As depicted in the upper diagram, BT, LU, and MD show
an expected behavior, where the programs run slower on the
VM with a slowdown of 7%, 9.6%, and 5.1% individually.
Mandelbrot presents a different behavior with a speedup of
6.5% on the VM. However, the results with the SPEC ap-
plications are more surprising. Observing the lower chart
of Figure 1, it can be seen that three of the four applications
run faster on the VM, where a speedup of 36% was mea-
sured with wupwise and the execution time of applu is even
less than the half of the time measured on the host.

Our first suspicion of the reason for such unexpected
behavior was access to memory, because the memory ac-
cesses significantly influence performance. We used Xeno-
prof [14], a profiling tool developed for the Xen virtual ma-
chine environment, to examine the memory access behavior
of the execution on the host and the VM. Xenoprof relies on
performance counters to acquire the runtime performance
data. We studied four counter events: data cache misses,
data cache line evicted, Data Translation Lookaside Buffer
(DTLB) miss, and Instruction TLB (ITLB) miss. However,
we only observed a slight difference between the perfor-
mance data acquired on the VM and with the physical exe-
cution. The conclusion is that the better performance on the
VM is not related to the memory virtualization.

We then studied the process activity in real time with the

91

Figure 2. Speedup of NAS applications running on the host machine and virtual machines.

Linux command top for the case of physical runs. We ob-
served that wupwise and applu were marked constantly with
a status of D (disk sleep) with a CPU consumption of less
than 1%. We found that the reason was related to swim. This
application had been writing its calculation result to an out-
put file of 85MB and was running the entire time with 100%
CPU consumption. Occasionally wupwise and applu were
put into run state but after a few seconds they slept again.
Only after swim completed its execution both applications
were executed with full CPU time.

The execution time of wupwise on the physical machine
was 211 minutes 21 seconds. However, the actual CPU time
was only 129 minutes. This is 6 minutes less than the exe-
cution time on the VM. The rest time was spent in waiting
for I/O. For applu the measured execution time on the host
was 182 minutes 43 seconds, among which the CPU time
was only 73 minutes 23 seconds. That is 5 minutes less
than the execution on the VM. It is clear that the better per-
formance on VMs is contributed by the I/O virtualization.
As mentioned in Section 2, each VM has a single virtual I/O
device/interface for handling disk activities. Therefore, the
I/O conflict, which can occur on the physical machine when
running multiple programs simultaneously, is eliminated by
virtualization.

3.2 Multi-threading Performance

Multicore is an ideal target platform for running shared
memory parallel applications. To evaluate the virtualization
impact on parallel execution we studied the performance of

OpenMP runs on both the physical system and the virtual
environment. We tested several SPEC and NAS OpenMP
benchmark applications and measured their execution time
on the host and the two VMs: VM-full and VM-para.

We studied the scalability because it is an essential cri-
terion to evaluate the performance of a parallel system. For
these experiments we ran only a single virtual machine on
the hardware and we ran the applications using different
number of threads and calculated the speedup. Figure 2
and 3 demonstrate the experimental results with the NAS
applications and the SPEC applications separately.

Within the NAS applications, EP shows the best scalabil-
ity: the application is scalable with a similar speedup on the
VMs as on the host. MG also performs well on the VMs,
where a slight difference is visible with the three lines in the
diagram. For FT the para-VM scales only to 6 cores and a
considerable decrease in speedup can be seen with 8 cores.
The same behavior is presented by CG as well, where the
para-VM does not run the application faster on 8 cores than
on 6 cores. The speedup on the full-VM is also low with
CG. The SPEC applications depict a better behavior, with
only a bad scalability for equake. It would be interesting to
see how the VMs behave on larger systems. Unfortunately,
we have only machines with eight cores.

In summary, the speedup achieved by the parallel exe-
cution on VMs is not bad, except the case with para-VMs
of eight cores. However, the overhead caused by virtual-
ization can be clearly seen when examining the individual
execution time. The application CG, for example, shows
a performance loss of 57% on the 8-core fully virtualized

92

Figure 3. Speedup of SPEC applications running on the host machine and virtual machines.

Figure 4. Execution time of the SP application.

VM. For all applications presented in Figure 2 and 3 the
best OpenMP run on VMs introduced a slowdown of 0.8%
and the worst case showed a slowdown of 75%.

However, the most interesting application is SP from the
NAS benchmark suite. The execution time of this applica-
tion on the host machine and the VMs is depicted in Figure
4. As can be seen the performance on the VMs is very poor.
More surprisingly, the execution time even increases with
the number of cores. As shown in the figure, it requires
2821 seconds to run SP on the fully virtualized machine us-
ing 8 cores. This is 28 times slower than the host run and a
368% slowdown to the case of sequential runs on the same
VM. This means that the parallelization of SP causes a sig-
nificant overhead.

In order to gain a deeper understanding of the problem,

we systematically studied the overheads of OpenMP con-
structs on the virtualized machines with the EPCC OpenMP
micro-benchmark suite [3].

Table 1 shows the results of all OpenMP constructs mea-
sured by the micro-benchmarks. The data were collected on
both the host machine and VM-full with different number of
cores.

The first OpenMP construct is PARALLEL which de-
fines a parallel region. It can be clearly seen that the over-
head with this construct on the VM is considerably larger
than on the host. Additionally, the overhead rises with the
number of cores in both cases, but with a smaller increase
on the host. On the VM the overhead increases significantly.

PARALLEL FOR also shows a significant overhead on
the VM. Similar to the construct PARALLEL, the overhead
goes up with the system scale. However, unlike PARAL-
LEL a slowdown with the overhead increase cannot be seen
with PARALLEL FOR (the case with seven cores is an ex-
ception).

The situation with BARRIER, a construct for thread
synchronization, is more critical. While the host machine
presents a constant overhead with this construct, the over-
head on the VM arises drastically with the number of cores
at a rate of 49% in average.

SINGLE is a construct used to define code regions that
are only executed by a single thread. This construct shows
the worst behavior, where the overhead on the host is less
than one second in all cases but the construct introduces an
overhead as high as 293 seconds on the VM when executing
the test code using eight cores.

93

Table 1. Overheads of the OpenMP constructs (in seconds).
Constructs 2 3 4 5 6 7 8

PARALLEL Host 3.17 3.19 3.23 3.24 3.46 3.85 3.87
VM 50.67 99.73 123 150.67 168.4 170.36 173.18

PARALLEL Host 3.24 3.25 3.28 3.34 3.67 3.96 4.04
FOR VM 51.39 100 121 151 174.43 175.31 220.23

BARRIER Host 1.43 1.43 1.43 1.43 1.43 1.43 1.43
VM 34.97 84.66 127 166.65 210.81 237.64 292.47

SINGLE Host 0.56 0.63 0.7 0.76 0.57 0.91 0.63
VM 40.59 81.7 126 168.56 212.13 236.61 293.1

CRITICAL Host 0.25 0.3 0.3 0.36 0.57 0.7 0.83
VM 0.56 1.66 1.86 2.54 3.13 3.15 3.49

LOCK/ Host 0.28 0.44 0.44 0.44 0.62 0.77 0.89
UNLOCK VM 0.53 1.68 1.8 2.51 3.04 3.05 3.49

ORDERED Host 1.2 0.94 0.91 0.88 0.88 0.88 0.88
VM 31.46 30.11 30.87 31.2 31.4 31.4 31.4

ATOMIC Host 0.1 0.1 0.1 0.18 0.21 0.23 0.34
VM 0.07 0.11 0.2 0.2 0.24 0.26 0.27

REDUCTION Host 3.18 3.25 3.51 3.56 3.9 3.92 3.92
VM 54.63 100 120 151 169.7 201.77 223.67

The next four constructs are used for mutual exclusion.
The first two constructs, CRITICAL and LOCK/UNLOCK,
show a larger overhead increase on the VM than on the
physical machine. However, the overhead is not high in
contrast to the aforementioned constructs. The overhead
with ATOMIC is visible but maintains constant as the sys-
tem scale changes. ATOMIC shows similar overhead on the
VM as on the host machine.

The behavior with REDUCTION, a construct for calcu-
lating a sum of the partial results, is similar to BARRIER.
The overhead caused by this construct goes up linearly with
the number of cores on the VM, while the physical machine
shows only a slight increase. In addition, the overheads on
the VMs are much larger than on the host machine.

Overall, all OpenMP constructs introduce more over-
head on VMs than on the host and the overhead on VMs
increases fast with the number of cores for most of the con-
structs. Therefore, we assumed that this overhead is proba-
bly the reason for the unexpected performance of SP. How-
ever, why does only SP show the strange behavior while
other tested programs not?

In order to find the answer, we applied another profiling
tool, ompP [9], to analyze the OpenMP constructs in detail.
ompP is an OpenMP profiler that collects performance data
at the runtime by instrumenting the source code. It delivers
per-region and per-thread timing statistics of the OpenMP
constructs at the end of the program run. As an advanced
feature, ompP produces an overhead analysis report which
quantifies the overhead into four categories: load imbal-
ance, synchronization, limited parallelism, and thread man-

agement. The first one defines the overhead caused by im-
balanced work sharing across the collaborating threads and
the subsequent idle waiting time. Synchronization overhead
is the overhead that arises because threads need to coordi-
nate their activity. An example is the waiting time to enter a
critical section or to acquire a lock. The overhead of limited
parallelism is resulted from unparallelized or only partly
parallelized regions of code. Thread management overhead
defines the time spent by the runtime system for manag-
ing the application’s threads. That is, time for creation and
destruction of threads in parallel regions and overhead in-
curred in critical sections and locks for signaling the lock or
critical section as available.

The ompP report depicts that only 13% of the time
needed for executing SP is used for useful computing and
the rest is caused by overheads. ompP also shows that the
overhead is almost fully caused by load imbalance in work-
sharing regions. Examining the region overview delivered
by ompP we found that SP contains 71 work-sharing re-
gions, in which 69 regions are LOOPs parallelized with the
construct PARALLEL FOR. This led us to further study the
runtime behavior of these LOOPs.

Table 2 shows the time spent by all eight threads, T1-
T8, in a sample LOOP of SP. The data were collected on
both the host machine and VM-full. ompP reported the time
needed for the LOOP body (bodyT) and the time for exiting
the implicit BARRIER at the end of the LOOP (exitBarT).

It can be seen that the time used by each thread for the
LOOP body varies only slightly between the VM and the
host. However, each thread needs more than 310 seconds

94

Table 2. Execution time of a LOOP in SP (all threads, time in seconds).
T1 T2 T3 T4 T5 T6 T7 T8

VM BodyT 11.24 11.22 11.33 11.22 11.26 11.24 11.17 10.92
ExitBarT 289.41 289.35 289.12 289.14 289.68 289.62 289.99 290.48

Host BodyT 14.55 14.84 10.81 14.39 14.45 11.65 10.23 9.79
ExitBarT 38.92 38.91 37.22 38.03 38.77 35.47 38.85 39.35

Figure 5. Speedup of the SP application: op-
timized vs. original.

for exiting the LOOP BARRIER on the VM while less than
40 seconds on the host.

Normally the overhead in a work-sharing region, like a
LOOP, is caused by the inconsistent execution time of each
thread, where some threads complete their work earlier and
have to wait for other threads. For SP, however, Table 2
shows that the work is better distributed across the threads
on the VM than on the physical machine. Therefore, we
concluded that the high overhead on the VM is not really
caused by load imbalance.

The conclusion led us to study the implementation of
BARRIER in gcc. GNU uses a common approach to
achieve the thread synchronization, with a counter com-
bined with a BARRIER. The counter is initialized with the
number of the parallel threads that work together for a shar-
ing region. Each thread decreases the counter by one when
arriving the BARRIER and then is blocked till the counter
value is zero. The problem lies in that GNU uses the func-
tion omp get num threads to acquire the number of total
threads. The latter then uses a system call to enter the ker-
nel space, which involves the hypervisor on a VM. Hence,
the BARRIER operation is more expensive on the VM than
on the host. For the studied LOOP ompP shows that each
thread enters the LOOP more than 1.5 million times; there-
fore the overhead is considerable because each entering is
combined with an implicit BARRIER. Other tested applica-
tions also contain a number of parallel LOOPs, but they are
executed only a few hundred times and the overhand is not
so large to limit scaling.

We went through the source code of SP. For the LOOPs
with similar behavior as the example we moved the paral-
lelization from the inner loop to the outer one to reduce the
number of BARRIERs. Surprisingly, this simple optimiza-
tion achieved a significant performance gain.

Figure 5 shows the speedup comparison of the optimized
version vs. the original code. It can be seen that the low-
est two lines, which present the original version on VMs,
go down with the number of cores, while the two lines for
the optimized version go up. The speedup of the optimized
version on the VMs is still not close to that achieved on the
host but it can be clearly seen that the application runs faster
with more cores except the case of using eight cores on the
para-virtualized machine. However, even with this case the
execution time on the VM is reduced from 1051 seconds to
168 seconds, meaning that the optimized version runs 6.2
times faster than the original implementation.

4 Conclusions

Increasingly virtualized machines are adopted for scien-
tific computing. An often asked question is: How does the
virtualization change the applications execution behavior?
The paper studied this issue with a multicore machine. We
tested a set of standard benchmark applications and ana-
lyzed the runtime behavior with performance tools. We
found that running applications separately on single VMs
may be better than running them all on the same physical
machine due to a better I/O performance contributed by vir-
tualization. When running parallel applications, however,
the performance is worse on the VM. A general guide for
shared memory programmers is to use synchronization di-
rectives as few as possible because they could damage the
performance. Hence, the traditionally applied fine-grained
parallelization shall not be applied when programming vir-
tualized multicore machines.

Currently, we are planning experiments with real appli-
cations to find more generic problems related to paralleliza-
tion on virtual machines. We will also study novel virtual-
ization techniques that take the specific feature of multicore
machines into account with the goal of reducing the virtual-
ization overhead.

95

Acknowledgements

This work was partially supported by the EU project
MADAME: Multicore Application Development and Mod-
eling Envi ronment.

References

[1] Amazon Web Services. Amazon Elastic Compute
Cloud (Amazon EC2). http://aws.amazon.com/ec2/.

[2] P. Barham, B. Dragovic, and K. Fraser. Xen and the
Art of Virtualization. In Proceedings of the nineteenth
ACM Symposium on Operating Systems Principles,
pages 164–144, 2003.

[3] J. M. Bull. Measuring Synchronisation and Schedul-
ing Overheads in OpenMP. In The First European
Workshop on OpenMP, pages 99–105, 1999.

[4] J. Dike. User Mode Linux. Prentice Hall, April 2006.

[5] J. Ekanayake and G. Fox. High Performance Parallel
Computing with Clouds and Cloud Technologies. In
Proceedings of the first International Conference on
Cloud Computing, October 2009.

[6] C. Evangelinos and C. N. Hill. Cloud Computing for
parallel Scientific HPC Applications: Feasibility of
Running Coupled Atmosphere-Ocean Climate Models
on Amazon’s EC2. In Proceedings of CCA-08, 2008.

[7] R. Figueiredo, P. Dinda, and J. Fortes. Case for
Grid Computing on Virtual Machines. In Proceedings
of the 23rd International Conference on Distributed
Computin, pages 550–559, May 2003.

[8] R. Figueiredo, P. A. Dinda, and J. Fortes. Resource
Virtualization Renaissance. Computer, 38(5):28–31,
2005.

[9] K. Fürlinger and M. Gerndt. ompP: A profiling tool
for openmp. In Proceedings of the First and Second
International Workshops on OpenMP (IWOMP 2005,
IWOMP 2006), pages 15–23, Eugene, Oregon, USA,
May 2005. LNCS 4315.

[10] L. Gilbert, J. Tseng, and R. Newman. Performance
Implications of Virtualization and Hyper-Threading
on High Energy Physics Applications in a Grid En-
vironment. In Proceedings of the 19th IEEE Inter-
national Parallel and Distributed Processing Sympo-
sium, April 2005.

[11] K. Z. Ibrahim, S. Hofmeyr, and C. Iancu. Charac-
terizing the Performance of Parallel Applications on
Multi-socket Virtual Machines. In IEEE International
Symposium on Cluster Computing and the Grid, May
2011.

[12] K. R. Jackson et al. Performance analysis of high
performance computing applications on the amazon
web services cloud. In Proceedings of the 2nd Inter-
national Conference on Cloud Computing Technology
and Science (CloudCom 2010), 2010.

[13] KVM. Kernel Based Virtual Machine.
http://www.linux-kvm.org/.

[14] A. Menon, J. R. Santos, Y. Turner, G. Janakiraman,
and W. Zwaenepoel. Diagnosing performance over-
heads in the xen virtual machine environment. In The
1st ACM/USENIX international conference on Virtual
execution environments, pages 13–23, 2005.

[15] D. Nurmi, R. Wolski, and C. Grzegorczyk. The Eu-
calyptus Open-source Cloud Computing System. In
Proceedings of CCA-08, 2008.

[16] M. Rosenblum and T. Garfinkel. Virtual Machine
Monitors: Current Technology and Future Trends.
Computer, 38(5):39–47, 2005.

[17] M. Ruda, J. Denemark, and L. Matyska. Scheduling
Virtual Grids: The Magrathea System. In The 3rd In-
ternational Workshop on Virtualization Technology in
Distributed computing, November 2007.

[18] F. Sande. OmpSCR: OpenMP Source Code Reposi-
tory. http://sourceforge.net/projects/ompscr/.

[19] B. Sotomayor, R. Montero, I. Llorente, and I. Foster.
Capacity Leasing in Cloud Systems using the Open-
Nebula Engine. In The First Workshop on Cloud Com-
puting and its Applications, October 2008.

[20] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R.
Wilson. A Computer Simulation Method for the Cal-
culation of Equilibrium Constants for the Formation of
Physical Clusters of Molecules: Application to Small
Water Clusters. Journal of Chemical Physic, 76, 1982.

[21] VMware. Server Consolidation. http://www.vmware.
com/solutions/consolidation/.

[22] VMware Inc. VMware. http://www.vmware.com.

[23] E. Walker. Benchmarking Amazon EC2 for High-
Performance Scientific Computing. The USENIX
Magazine, 33(5), October 2008.

96

