
Analyzing the Effect of Different Programming
Models Upon Performance and Memory Usage on

Cray XT5 Platforms
Hongzhang Shan

Future Technology Group, Computational Research Division,
Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Haoqiang Jin
NAS Division, NASA Arms Research Center, Moffett Field, CA 94035-1000

Karl Fuerlinger
University of California at Berkeley, EECS Department, Computer Science Division Berkeley, CA 94720

Alice Koniges, Nicholas J. Wright
NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Abstract—Harnessing the power of multicore platforms is chal-
lenging due to the additional levels of parallelism present. In this
paper, we examine the effect of the choice of programming model
upon performance and overall memory usage on the Cray XT5.
We use detailed time breakdowns to measure the contributions
to the total runtime from computation, communication, and
OpenMP regions of the applications, gaining insights into the
reasons behind any performance differences observed. We also
examine the performance differences between two different Cray
XT5 machines, which have quad-core and hex-core processors.

I. INTRODUCTION

Moore’s Law continues unabated; the number of transistors
on a chip still doubles every eighteen months. However, be-
cause of power constraints, clock speeds remain approximately
constant and the extra transistors are being used to add cores.
This will lead to future architectures with multicore/manycore
designs with a greater number of simpler, smaller cores as
compared to today. Also, as the growth in memory capacity
is not keeping track with the growth in the number of cores,
memory per core will also decrease on future architectures.
Thus a critical factor affecting parallel programming models
in the future is the amount of memory that they use.

Currently, the most popular programming model is to use
MPI with as many MPI tasks as there are cores. In MPI
programs, each MPI process has its private address space and
processes move data from one address space to another via
sending and receiving messages. The communication between
these processes is carried out through explicit message passing.
Therefore, extra data copies and/or duplication are usually
needed. This currently popular programming model of MPI

everywhere is not likely to be a viable model on these
newer architectures simply because of the reduced amount
of memory per core that will be available. It is therefore
important to investigate other available programming models
to understand whether they can replace or be combined with
MPI in order to avoid these issues.

Another parallel programming model commonly used is
shared memory, using threads. OpenMP is the most commonly
used programming model for shared memory parallelism in
the High Performance Computing (HPC) community. Gen-
erally, OpenMP provides convenient features for loop-level
parallelism as well as some advanced dynamic approaches to
parallelism such as tasking. In OpenMP programs, all data is
shared by all OpenMP threads and can be directly accessed.
Unlike MPI programs, no extra copying is needed for data
communication and exchange. In general, shared memory
paradigms such as OpenMP could potentially save a large
amount of memory and enable relatively larger data sets to
be run. This is particularly true if one considers a hybrid
programming model, that is one that uses OpenMP within a
node and MPI between nodes.

Another approach to parallelism is the PGAS (Partitioned
Global Address Space) languages. These attempt to combine
the convenience of the global view of data with an awareness
of data locality. One of these PGAS languages, UPC (Unified
Parallel C) is an extension to C with both shared and local
addresses.

In this paper we compare the performance of the NAS
parallel benchmarks, written in MPI, OpenMP and UPC on
the Cray XT5 platform and examine the memory usage of the



different programming models. We also examine the perfor-
mance differences between two different Cray XT5 machines,
one with quad-core processors and one with hex-core.

This paper is structured as follows: Section II describes
the two Cray XT5 machines we use in more detail, Sec-
tion III describes our data collection techniques, Section IV
describes the results of our memory usage measurements
and Section V contains the performance results comparing
the different programming models. Section VI contains the
performance comparison between Jaguar, the hex-core, and
Hopper, the quad-core, XT5 machines. Finally, Section VII
contains the related work and Section VIII summarizes.

II. PLATFORMS FOR EXPERIMENTS

In this work we compare the performance of two Cray XT5
machines, Jaguar and Hopper. Hopper is located at NERSC
and Jaguar is located at Oak Ridge National Laboratory. The
machines are very similar, both are made up of dual socket
nodes connected with Seastar 2+ Cray interconnect and with
16 GB DDR2 800 MHz memory per node. The principal
difference is the processors. Hopper contains 2.4 GHz quad-
core AMD ‘Shanghai’ Opteron processors whereas Jaguar
contains hex-core 2.6 GHz ‘Istanbul’ processors. In principle
therefore there is 1.6x the computational power available per
Jaguar node compared to a Hopper node. However the memory
and network subsystems on each node are the same, this is
illustrated by the stream [?] number which is 1.5X slower per
core on Jaguar. Therefore the relative performance of Jaguar
to Hopper of a scientific application will depend upon the
demands it places upon the hardware; a purely memory bound
code will be slower on Jaguar on a per core basis, whereas a
compute bound code will be faster.

We note here that the NERSC XT5 machine used here is
actually phase 1 of Hopper; a much larger machine, phase 2,
will be installed later this year.

III. DATA COLLECTION TECHNIQUES

To gain an idea of how the different programming languages
compare, we use versions of the NAS Parallel Benchmarks
(NPB) as a benchmark suite. In the examples used in this
paper, the MPI and OpenMP versions come from the standard
NAS distribution [?], and the UPC codes come from a distri-
bution developed by George Washington University (GWU),
the Berkeley UPC group, and NAS [?], [?].

As well as recording the runtimes of our performance
experiments we also instrument them using the Integrated Per-
formance Monitoring (IPM) framework [?], [?]. IPM provides
a low overhead mechanism for obtaining information about
the MPI performance characteristics of an application. It uses
the Profiling interface of MPI (PMPI) to obtain information
about the time taken and type of MPI calls, the size of the
messages sent and the message destination. Recently IPM
was augmented to obtain OpenMP profiling information also.
By using compiler instrumentation to insert tracepoints at
the beginning and end of every OpenMP region within the
code we are able to measure the time taken in OpenMP by

the application. This is a useful indicator to understand the
scaling behavior of OpenMP based codes. Those that spend a
significant amount of their runtimes in serial regions, i.e. those
involving neither OpenMP nor MPI are not going to be able
to scale efficiently to large numbers of threads. We also use
IPM to record the memory high-water mark for each of the
applications. This is simply the number reported by the Linux
kernel.

The compiler used for MPI, OpenMP, and hybrid
MPI+OpenMP is the default PGI compiler installed on Cray
XT5. For UPC, the berkeley UPC compiler and runtime system
are used [?].

IV. MEMORY USAGE OF DIFFERENT PROGRAMMING
MODELS

Fig. 1 shows the difference in the amount of memory usage
of NPB3.3 programs when MPI, OpenMP, and UPC versions
of the code are used. The data are collected for class C data
sets when four cores are used. All the values are relative to the
amount of memory used by the MPI version. Clearly the most
memory efficient version is the OpenMP one. The memory
savings are around 50% for BT, EP, IS, and SP, 20% for CG,
FT, and LU. Only for MG, the amount of memory used by
the OpenMP version is close to MPI, but still less by 4%.
The smaller difference between OpenMP and MPI for MG
is mainly because the communication buffer needed for MPI
in this code is quite small compared with the grid data. For
smaller data sets, the percentage difference will become larger.
The EP benchmark is an Embarrassingly Parallel program
which requires almost no effort to communicate data between
different tasks and therefore no extra data copy or duplication
are needed for MPI. Thus the additional memory usage in
EP’s MPI version can be attributed to the MPI runtime
consumption.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

EP LU BT SP CG IS MG FT

R
el

at
iv

e 
M

em
or

y 
U

sa
ge

 t
o 

M
P

I

MPI UPC OpenMP

Fig. 1. The relative memory usage of NPB3.3 applications for MPI, OpenMP,
and UPC for four-core runs. The ratios are relatively to MPI usage.

Fig. 2 shows that the actual amount of memory usage for
each of the benchmarks. For EP it is quite small. For FT,
BT, SP, and IS, MPI uses substantially more memory than
OpenMP.



Specifically, for FT, OpenMP consumes around 25% less
memory than MPI (as shown in Fig. 2). FT performs a
Fourier Transform which contains a transpose operation. This
large memory difference is mainly caused by the differ-
ences between the transpose implementation between MPI
and OpenMP. For the transpose, which is implemented by
all-to-all communication in MPI, an extra array is needed
for MPI to hold the communication data while in OpenMP,
the data can be directly accessed by all threads and thus
extra array is not necessary. For CLASS C, the array size is
512*512*512*sizeof(double complex)=2GB. The main mem-
ory usage difference is caused by this extra data array of size
2GB.

0

1

2

3

4

5

6

7

8

9

EP LU BT SP CG IS MG FT

M
em

or
y 

Fo
ot

pr
in

ts
 (

G
B

)

OpenMP

MPI

UPC

Fig. 2. The memory footprints of NPB3.3 applications for MPI, OpenMP,
and UPC for four-core runs.

Another difference between MPI and OpenMP is that usu-
ally the amount of memory usage for OpenMP is constant
regardless of the number of cores used while for MPI, more
memory is needed as the number of tasks increases. This may
be due to MPI runtime system requirements, communication
buffers in the applications, or the replication of stored data to
avoid communication. This may not be true for all OpenMP
applications however. In some applications, the OpenMP
threads may need to dynamically allocate more space, to store
private variables or to store data on a per thread basis for later
aggregation to avoid locks.

The amounts of memory used by the UPC versions is very
close to the MPI versions, only slightly less. Like OpenMP
programs, UPC could provide a shared address space for the
shared data. Therefore, potentially it could save the same
amount of memory as OpenMP. However, in this study, the
UPC programs used are converted from the corresponding MPI
programs. For performance reasons, explicit data partition and
one-sided communication via upc memput/upc memget are
used, leading much higher memory usage than OpenMP.

A. MPI+OpenMP Hybrid Model

We now consider hybrid programming models that use
OpenMP within shared memory nodes and MPI between
nodes. One question is whether or not the memory usage

advantage of OpenMP is retained in hybrid programming
models. The NPBs include “multi-zone” (MZ) versions that
use a standard hybrid OpenMP and MPI programming model
for the NPB3.3-MZ release.

Fig. 3 displays the relative memory footprints of SP-MZ and
BT-MZ. The results are collected for 256 cores on Hopper for
different combinations of MPI tasks and OpenMP threads.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

256*1 128*2 64*4 32*8

MPI * OpenMP

R
el

at
iv

e 
M

em
or

y 
U

sa
ge

 t
o 

M
P

I 

BT-MZ

SP-MZ

Fig. 3. The relative memory usage of BT-MZ and SP-MZ for MPI+OpenMP
hybrid programming models for different combinations of MPI tasks and
OpenMP threads.

The base case is using 256 MPI processes and 1
OpenMP thread for each MPI process, i.e., setting the
OMP NUM THREADS to 1. Then, we increase the
OMP NUM THREADS to 2, 4, and 8 and reduce the number
of MPI processes correspondingly. All the memory usage
measurements are relative to the base case. The results in Fig.
3 indicate that using more OpenMP threads could significantly
reduce the amount of memory needed. When the number of
OpenMP threads reaches 8, the amount of memory needed
drops to 20% of the base case. Thus using OpenMP saves
a significant amount of memory when hybrid programming
models, showing a great promise for its future.

V. PERFORMANCE EFFECTS OF DIFFERENT
PROGRAMMING MODELS

In this section, we investigate the performance differences
between programming models on the same platform, Hopper.
Furthermore, we explain potential reasons for these perfor-
mance differences, such as whether they are due to the
semantics of the programming models or due to the imple-
mentation or coding styles. The performance on one node for
MPI, OpenMP, and UPC are examined first. Then, the inter-
node performance is compared to include the effects of the
interconnect.

A. Performance Using One Node

Fig. 4 shows the performance ratio of OpenMP and UPC to
MPI for 8-core runs on Hopper which has eight core nodes.
(Due to the algorithmic limitations within BT and SP, they can



0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

CG EP FT IS LU MG

R
el

at
iv

e 
P

er
fo

rm
an

ce
 t

o 
M

P
I

MPI

OpenMP

UPC

Fig. 4. The Relative Performance to MPI on a 8-core node.

only be run with square number of tasks and therefore cannot
be run with 8 tasks.)

For CG, LU, EP, and MG, the three programming models
deliver very similar performance. However, FT and IS show
substantial performance difference across these three models.
OpenMP delivers the best results, almost 60% faster than MPI,
UPC delivers the lowest performance, 20% slower than MPI.
Further examination shows that for FT, the explicit transpose
in the MPI program causes extra data copy and movement,
which is not necessary in the OpenMP program, slowing down
its execution. The UPC program follows similar programming
pattern of MPI. It also includes an explicit transpose phase and
this phase takes more time than MPI, leading its performance
to be the worst of these three. Theoretically, due to the shared
memory concept supported by UPC, the UPC version of FT
could be programmed in a way similar to OpenMP instead of
MPI. However, it is not currently implemented this way.

The IS benchmark suffers a problem similar to that of FT. In
its MPI implementation, there exists an explicit data exchange
phase, which does not exist in the OpenMP version. This
extra data copy and movement phase causes the MPI and UPC
performance to degrade.

The results indicate that the performance differences inside
a node between different programming models are mainly
caused by the programming differences needed for different
programming models. For most of the NPB these effects are
not significant the exceptions being FT and IS. In these cases
the shared memory model of OpenMP allows for less overall
communication and therefore higher performance.

B. Performance Using Eight Nodes

Currently, OpenMP programs cannot not be run using more
than one node on Cray platforms. Therefore, in this subsection,
we will compare only the performance of MPI and UPC.

Fig. 5 shows the relative performance of UPC to MPI for 64
cores, which is eight nodes of Hopper. UPC performs worse
than MPI for LU, SP, MG, BT, and FT, almost the same
for CG, and better for EP and IS. To understand the reasons
why we analyze the performance of LU, CG and IS in more

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

LU SP MG BT FT CG EP IS

R
el

at
iv

e 
P

er
fo

rm
an

ce
 t

o 
M

P
I

Fig. 5. The Relative Performance of UPC to MPI on Hopper for 64 cores.

detail. To do this we divide the total runtime into two parts:
the communication time and local computation time. For the
MPI versions these measurements are made with IPM, for
the the UPC versions they are made by inserting timers into
the code. The ratios of these components of UPC runtime to
MPI are shown in Fig. 6 and the actual times are displayed
in Table I. For LU, the time the UPC version spends on
local computation is slighter higher than the corresponding
MPI time. However, the UPC communication time is much
higher than the MPI communication time. Further examination
shows that in MPI, the communication is carried out by
send/recv pairs while in UPC, it is implemented by one-sided
put/get method. However, due to the lack of a point-to-point
synchronization primitive in the current UPC language, the
synchronization for pipelining operations in LU is done by
testing the value of a shared variable. It may be not as efficient
as the implicit MPI synchronization through send/recv pairs.
For CG, both the communication time and local computation
times are similar for these two programming models. For IS,
the communication time dominates the performance. Though
the UPC computation time is 70% higher, the saving in the
communication time outweighs the increase of the computa-
tion time, leading to a better overall runtime for UPC. The
significantly better communication time in the UPC version is
due to the one-sided put/get messaging it uses which is more
efficient than the MPI Alltoallv function in the MPI program.

TABLE I
THE COMMUNICATION TIME AND COMPUTATION TIME OF UPC AND MPI

FOR 64-CORE RUNS ON HOPPER

LU CG IS
MPI UPC MPI UPC MPI UPC

Comm 5.06 14.25 6.08 5.99 1.51 0.83
Comp 24.56 29.05 8.98 9.22 0.31 0.53

Overall the MPI and UPC results show that the ease-
programming one-sided messages in UPC usually performs
more efficiently than the send/recv pairs in MPI. However, it
does not guarantee a better overall performance.



0.0

0.5

1.0

1.5

2.0

2.5

3.0

LU CG IS

R
el

at
iv

e 
Ti

m
e 

to
 M

P
I

Comm

Comp

Fig. 6. The Relative Component Time Breakdown of UPC to MPI on Hopper
(the ratios are used).

C. Hybrid MPI+OpenMP

We now turn to the performance of the Multi-Zone hybrid
MPI/OpenMP NPB’s. Using IPM we are able to partition the
runtime into time spent in MPI or OpenMP or neither MPI or
OpenMP (called Serial).

For BT-MZ, its time breakdown is shown in Fig. 7 and
Table II. When 16 cores are used almost all of the runtime
is in OpenMP regions. With the increase of the number of
cores, OpenMP time reduces very fast while the MPI time
increases. For 256 cores, when 256 MPI tasks are used, the
MPI time increases sharply. This is due to load imbalance.
For the CLASS C data set, there are total 256 zones, one per
MPI tasks, with substantially different sizes. When fewer MPI
processes are used, the load imbalance is improved due to the
bin-packing load assignment algorithm, i.e., using fewer MPI
processes and more OpenMP threads. This is a nice example
of one of the oft-stated benefits of hybrid programming: the
ability to mitigate load-balance issues by requiring less overall
domain decomposition.

0

20

40

60

80

100

120

140

160

2*
8

4*
4

8*
2

16
*1 8*
8

16
*4

32
*2

64
*1

32
*8

64
*4

12
8*
2

25
6*
1

16 64 256
MPI * OpenMP

Ti
m

e 
B

re
ak

do
w

n
s 

(s
ec

on
ds

)

Serial

OpenMP

MPI

Fig. 7. The BT-MZ Time Breakdown on Hopper.

The SP-MZ performance scales very well with the number

TABLE II
THE MPI, OPENMP,AND SERIAL TIMES (SECONDS) FOR BT-MZ

16 Cores (MPI * OpenMP)
2*8 4*4 8*2 16*1

MPI 0.76 1.45 1.46 2.08
OpenMP 99.23 84.12 76.49 76.78

Serial 0.28 0.12 0.06 0.03
64 Cores (MPI * OpenMP)

8*8 16*4 32*2 64*1
MPI 0.83 0.95 1.53 3.23

OpenMP 24.76 21.09 19.53 19.52
Serial 0.07 0.03 0.02 0.01

256 Cores (MPI * OpenMP)
32*8 64*4 128*2 256*1

MPI 0.65 0.69 23.72 118.39
OpenMP 6.30 5.21 5.45 22.32

Serial 0.03 0.01 0.01 0.01

of cores as shown in Fig. 8. The time breakdown shows
that most of the time is spent on the OpenMP regions. The
percentage of time spent in MPI functions is quite small
though it increases with the number of cores used (see Table
III). Thus the performance is dominated by the OpenMP
performance. There are also performance differences using
different numbers of OpenMP threads. The best performance
is obtained when the number of OpenMP threads per MPI
process is 2.

0

10

20

30

40

50

60

70

80

90

2*
8

4*
4

8*
2

16
*1 8*
8

16
*4

32
*2

64
*1

32
*8

64
*4

12
8*
2

25
6*
1

16 64 256
MPI  * OpenMP

Ti
m

e 
B

re
ak

do
w

n
s

(s
ec

on
ds

) Serial

OpenMP

MPI

Fig. 8. The SP-MZ Time Breakdown on Hopper.

For LU-MZ, the best performance is obtained when maxi-
mum number of OpenMP threads are used, as shown in Fig. 9.
This shows that most of the runtime is spent in OpenMP and
the best performance is obtained when the number of OpenMP
threads reaches 8 (see Table IV). The performance of LU-MZ
favors using more OpenMP threads. This is probably due to the
following reasons. First, in each OpenMP region, the workload
for each OpenMP thread is high, enough to amortize the cost
to activate and deactivate the OpenMP thread. Secondly, using
more OpenMP threads also reduces the corresponding number
of MPI processes. A side effect is that the total number of
messages is reduced and the message sizes are increased,
leading to better communication performance and improving



TABLE III
THE MPI, OPENMP,AND SERIAL TIMES (SECONDS) FOR SP-MZ

16 Cores (MPI * OpenMP)
2*8 4*4 8*2 16*1

MPI 0.39 0.97 1.52 2.55
OpenMP 81.10 58.28 47.30 52.36

Serial 0.64 0.25 0.14 0.08
64 Cores (MPI * OpenMP)

8*8 16*4 32*2 64*1
MPI 1.12 0.51 0.95 1.42

OpenMP 17.71 14.23 11.8 12.51
Serial 0.16 0.07 0.04 0.03

256 Cores (MPI * OpenMP)
32*8 64*4 128*2 256*1

MPI 0.29 0.59 0.49 0.44
OpenMP 4.38 3.46 2.92 3.10

Serial 0.05 0.02 0.02 0.00

the performance further. Finally, each MPI process is assigned
several zones. The OpenMP threads spawned by the same MPI
process will work on these zones together, one at a time. Using
more OpenMP threads will increase the cache size for the same
amount of data and improve the performance (assuming one
OpenMP thread assigned to one core).

0

50

100

150

200

250

300

350

400

1*8 2*4 4*2 8*1 2*8 4*4 8*2 16*1 8*8 16*4

8 16 64
MPI  * OpenMP

Ti
m

e 
B

re
ak

do
w

n
s 

(s
ec

on
ds

)

Serial

OpenMP

MPI

Fig. 9. The LU-MZ Time Breakdown on Hopper.

For hybrid MPI+OpenMP applications, using more
OpenMP threads will potentially improve the cache usage
and communication patterns while it may also increase the
synchronization cost among the OpenMP threads and the
activation/deactivation overhead. The tradeoff will be closely
related with the workload size in the OpenMP regions. In LU-
MZ, there are total 16 zones while in BT-MZ and SP-MZ,
there are total 256 zones. The zone size in LU-MZ is much
larger than the zone size in BT-MZ and SP-MZ. Therefore,
LU-MZ requires relatively larger OpenMP threads to deliver
the best performance. However, the exact number of OpenMP
threads to deliver the best performance may vary on different
architectures and platforms.

TABLE IV
THE MPI, OPENMP,AND SERIAL TIMES (SECONDS) FOR LU-MZ

8 Cores (MPI * OpenMP)
1*8 2*4 4*2 8*1

MPI 0.00 0.60 1.23 2.08
OpenMP 187.01 210.15 328.23 339.60

Serial 0.06 0.03 0.02 0.01
16 Cores (MPI * OpenMP)

2*8 4*4 8*2 16*1
MPI 0.33 1.98 1.01 1.46

OpenMP 93.64 105.62 164.72 169.9
Serial 0.04 0.01 0.00 0.01

64 Cores (MPI * OpenMP)
8*8 16*4 32*2 64*1

MPI 0.31 0.37 X X
OpenMP 23.4 26.12 X X

Serial 0.01 0.01 X X

VI. PERFORMANCE COMPARISON OF HOPPER AND
JAGUAR

On Hopper, each node has two quad-core processors while
on Jaguar each has two hex-core processors. In this section,
we will examine the performance effects of this difference.

A. Single Node Performance

On Jaguar, each node has 12 cores, and the MPI and UPC
version of NPB3.3 cannot not be run with 12 tasks, which
require the number of tasks to be power of 2 or a square
number. Thus we focus our attention on the OpenMP programs
only.

If eight cores are used on Jaguar, the expected perfor-
mance difference between Jaguar and Hopper will at best be
(2.6/2.4=) 1.08 due to the different CPU frequencies or 1.0 due
to same memory bandwidth. This is exactly the case as shown
in Fig. 10. Some of the applications are very slightly faster on
Jaguar, EP, CG, IS and LU, due to they being basically cache
resident and therefore sensitive to the clock speed difference.
When all 12 cores on a Jaguar node are used, the expected
performance ratio is, at most, 1.625 (6*2.6/4*2.4). Only EP
reaches this value. For CG and IS, the values are around 1.4.
This is simply a reflection of the cache speed dependency of
these applications as noted before. The worst ratio is for MG
and SP which show approximately equal performance on 12
cores of Jaguar and 8 core of Hopper. This indicates that they
are memory bound, and that for these kinds of applications the
extra two cores on Jaguar are not providing any performance
benefit.

B. Performance Using 64, 256 and 1024 Cores

On both machines, the codes were run on the same number
of cores, 64, 256 and 1024. On Jaguar, each node has 12 cores
while on Hopper 8. For these core counts that are not exactly
divisible by 12 some of the cores on one node of Jaguar were
left idle.

In this case it is hard to determine the expected performance
ratios. As well as the factors due to clock speed and memory



0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Jaguar12/Hopper8 Jaguar8/Hopper8

P
er

fo
rm

an
ce

 R
at

io

BT CG EP FT

IS LU MG SP

Fig. 10. The Performance Ratio of Jaguar vs. Hopper For OpenMP Model
on a Node.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

64 256 1024

P
er

fo
rm

an
ce

 R
at

io BT

CG

EP

FT

IS

LU

MG

SP

Fig. 11. The Performance Ratio of Jaguar vs. Hopper for MPI Programs.

contention outlined in the previous section there is also con-
tention for network resources because on Jaguar there are 1.5×
as many cores sharing the same network resource.

The normalized performance of Jaguar vs. Hopper at each
of the three core counts is shown in Fig. 11 and the cor-
responding normalized runtime breakdown is shown in Fig.
12 as measured using IPM. The EP benchmark consistently
performs better on Jaguar due to its higher processor frequency
as discussed before. This can also be deduced from its lower
computation time in Fig. 12. For all the other applications,
the computation time on these two platforms are very close,
which is to be expected from the single node experiments.
The performance differences are mainly caused by different
communication performance. For IS, the communication time
on Jaguar is 3.5 times higher than Hopper, leading to the
worst normalized performance on Jaguar. Using more cores
per node without increasing the network bandwidth causes
more network contention, degrading the overall performance
substantially.

We now consider the multizone benchmarks. For BT-MZ,
the performance ratio is very close to the expected value, one.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Comm Comp

R
el

at
iv

e 
Ti

m
e 

R
at

io BT CG EP FT

IS LU MG SP

Fig. 12. The Normalized Time Breakdown of Jaguar vs. Hopper for MPI
Programs using 1024 cores.

For SP-MZ, Jaguar always performs worse than Hopper. (For
LU-MZ, since there are total 16 zones for Class C data set so
we can not run cases which uses more than 16 MPI processes.)
The difference in performance between Jaguar and Hopper
decreases with increasing number of OpenMP threads which
indicates that the problem of network and memory contention
is increased in the hex-core configuration.

0.0

1.0

2.0

16*4 32*2 64*1 64*4 128*2 256*1

64 256
MPI * OpenMP

P
er

fo
rm

an
ce

 R
at

io BT-MZ SP-MZ

Fig. 13. The Performance Ratio of Jaguar vs. Hopper For NPB3.3-MZ.

VII. RELATED WORK

A lot of literature has been published comparing different
programming models. Among them, the most related to our
work is [?], where the performance of MPI, OpenMP, and UPC
were evaluated on a machine with 142 HP Integrity rx7640
nodes interconnected via InfiniBand. The authors claim that
MPI is the best choice to use on multicore platforms, as it
takes the highest advantage of data locality . Our work differs
from several perspectives. First, we use more applications
in our evaluation and the UPC codes we used are better
written and tested. Secondly, we find that the best performance
is not always produced by the MPI version of the code,



both OpenMP (inside a node) and UPC can outperform MPI
for some applications. Thirdly, we quantitatively studied the
performance effects of increasing from 8 cores to 12 cores in
a node.

We also examined the performance of NPB3.3-MZ which is
developed in MPI+OpenMP hybrid programming models. We
found that using more OpenMP threads always delivers better
performance than using one OpenMP thread per MPI process.
Similar work to evaluate the performance effects of hybrid
MPI+OpenMP models on Cray XT5 can be found in [?]. How-
ever, in this paper, we provide detailed time breakdowns to
help to understand how the performance changes with varying
number of MPI and OpenMP tasks instead of only the absolute
performance. We also provides detailed time breakdowns to
compare the MPI performance and UPC performance. This
differs us from several other researches which only compare
the absolute performance of MPI and UPC [?], [?].

Furthermore, we quantitatively measured the amount of
memory needed by different programming models, including
MPI, OpenMP, UPC, and hybrid MPI+OpenMP. To the best of
our knowledge this is the first time that memory usage of these
different programming models has been quantitively analyzed
and compared.

VIII. CONCLUSIONS

In this paper we have examined the performance of dif-
ferent programming models OpenMP, MPI and UPC on the
Cray XT5 machine, Hopper at NERSC. As well as simply
measuring the runtime by using IPM and inserting explicit
timers into the code we were able measure the contributions to
the runtime from computation, communication and OpenMP
regions of the applications. Therefore we were able to gain
insight into the reasons behind any performance differences
observed. Our results show that in most cases the performance
of each of the different programming methods are very close
for the NAS Parallel Benchmarks. In the cases that show the
most performance difference it is always the OpenMP case
that is the fastest. Our performance analysis shows that this is
always due to the reduced communication costs in the shared
memory model.

We also compared the performance of MPI and UPC on
64 cores of Hopper. The results showed that the performance
of the two methods is, on average, quite similar, with UPC
being slightly slower overall. This is mainly because the
UPC compiler and runtime systems we used are still under
improvement and have not been fully tuned to work on the
NUMA architectures, like Cray-XT5.

We also examined the memory usage of each of the different
programming models. In general OpenMP has much reduced
memory requirements. This is especially true for the FT and
IS benchmarks, because these applications need extra arrays
to hold communication data. This advantage is also been
reflected in MPI+OpenMP hybrid results. Furthermore, the
hybrid results indicate that using more than one OpenMP
thread always produces better results than using only one

OpenMP thread per MPI process, showing great promise for
the future of the hybrid programming models.

We also looked at the performance differences caused by the
different node size of Hopper and Jaguar (quad and hex core
respectively). The results tell us that putting more cores on a
node will potentially cause more memory contention. This may
degrade the performance of applications which are memory
bandwidth bound, often obviating the potential advantage of
the additional two cores per socket. Another disadvantage
of the hex-core configuration is the increased contention for
interconnect resources. This is especially apparent from the
results for the IS benchmark which runs 3× slower on Jaguar
than Hopper on 1024 cores. In this case it maybe better to run
using less MPI tasks than cores and use hybrid programming
models as this will lead to less contention for shared resources,
as in the case of the SP-MZ results.

In future work we plan to look at another hybrid program-
ming model, UPC + MPI, as well as extend our analysis to full
scale scientific applications to understand in greater depth the
advantages and disadvantages of each programming model.

IX. ACKNOWLEDGEMENTS

All authors from Lawrence Berkeley National Laboratory
were supported by the Office of Advanced Scientific Comput-
ing Research in the Department of Energy Office of Science
under contract number DE-AC02-05CH11231. This work used
resources of the National Energy Research Scientific Comput-
ing Center, under Contract No. DE-AC02-05CH11231, and
resources of the National Center for Computational Sciences,
under contract No. DE-AC05-00OR22725. The authors would
like to thank Seung-Jai Min, Filip Blagojevic, and Paul Har-
grove for their help collecting the UPC results.


