Recent Experiences in Using MPI-3 RMA in the DASH
PGAS Runtime

Joseph Schuchart
schuchart@hlrs.de
High Performance Computing Center Stuttgart
(HLRS)
University of Stuttgart
Germany

ABSTRACT

The Partitioned Global Address Space (PGAS) programming
model has become a viable alternative to traditional message
passing using MPL. The DASH project provides a PGAS ab-
straction entirely based on C++11. The underlying DASH
RunTime, DART, provides communication and management
functionality transparently to the user. In order to facilitate
incremental transitions of existing MPI-parallel codes, the de-
velopment of DART has focused on creating a PGAS runtime
based on the MPI-3 RMA standard. From an MPI-RMA user
perspective, this paper outlines our recent experiences in the
development of DART and presents insights into issues that
we faced and how we attempted to solve them, including
issues surrounding memory allocation and memory consis-
tency as well as communication latencies. We implemented
a set of benchmarks for global memory allocation latency
in the framework of the OSU micro-benchmark suite and
present results for allocation and communication latency
measurements of different global memory allocation strate-
gies under three different MPI implementations.

KEYWORDS

Partitioned Global Address Space, PGAS, MPI-RMA, commu-
nication latency, global memory allocation, DASH

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HPC Asia 2018 WS, January 31, 2018, Chiyoda, Tokyo, Japan

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.

ACM ISBN 978-1-4503-6347-1/18/01...$15.00
https://doi.org/10.1145/3176364.3176367

Roger Kowalewski

Karl Fuerlinger
roger.kowalewski@nm.ifi.lmu.de
karl.fuerlinger@nm.ifi.lmu.de
Computer Science Department, MNM Team
Ludwig-Maximilians-Universitidt (LMU) Munich
Germany

ACM Reference Format:

Joseph Schuchart, Roger Kowalewski, and Karl Fuerlinger. 2018.
Recent Experiences in Using MPI-3 RMA in the DASH PGAS Run-
time. In HPC Asia 2018 WS: Workshops of HPC Asia 2018, January 31,
2018, Chiyoda, Tokyo, Japan. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3176364.3176367

1 INTRODUCTION

The PGAS (Partitioned Global Address Space) programming
model is widely considered a promising approach for pro-
gramming current and future large-scale systems [1, 12, 25].
It lends itself well for the development of unstructured and
irregular applications and exposes a high potential for over-
lapping communication and computation to hide communi-
cation latencies by decoupling communication and process
synchronization [2].

The PGAS approach relies on a one-sided communication
model, where the target of a communication operation is not
actively involved in the data transfer. The hardware realiza-
tion of this one-sided communication model is available in
the form of Remote Direct Memory Access (RDMA), which
most modern interconnect networks support. Several PGAS
runtime systems exploit the capabilities of RDMA-enabled
networks, including GASnet [2], ARMCI [19], GASPI [14],
and OpenShmem [5]. However, these libraries are often not
part of the standard software stack of HPC systems and can
be tricky to install and tune for individual users.

In contrast, MPI is ubiquitous as the de-facto standard
in HPC and thus an MPI library installation is available on
almost all HPC platforms. With version 3.0 of the MPI stan-
dard, a well-designed interface for one-sided communication
became available in the form of MPI-3 RMA [9, 16] which
addresses conceptual limitations of the earlier MPI-2 stan-
dard [3]. Moreover, we expect that MPI implementations will
be at the forefront in supporting next-generation large-scale
systems, including future Exa-scale architectures.

DASH makes extensive use of C++11 features to abstract
some of the complexities of this PGAS model while providing
an incremental path for migration of traditional C++ MPI

https://doi.org/10.1145/3176364.3176367
https://doi.org/10.1145/3176364.3176367

HPC Asia 2018 WS, January 31, 2018, Chiyoda, Tokyo, Japan

applications. As a new project, without the shackles of legacy
code, we decided to investigate the possibility of using MPI-3
RMA features as a basis for the runtime system of DASH,
called the DASH RunTime (DART). The main benefits we
hoped for by following this approach were to enable an
easier integration with existing (MPI) applications, easing
the installation burden on users, and benefiting from as well
as participating in the active development happening in the
MPI community.

Previous work has presented the foundations and prelimi-
nary performance evaluations of this approach [27, 28]. The
main contribution of this work is to provide an update on re-
cent experiences in implementing the DART runtime based
on MPI and to point out some of the challenges we encoun-
tered. We also contribute measurements for communication
and global memory allocation latencies that will influence
future design decisions in the development of DART.

The remainder of this paper is structured as follows: Sec-
tion 2 provides a short overview on DASH and DART fol-
lowed by an outline of the implementation of DART and
the used MPI features in Section 3. Section 4 provides a
performance evaluation of DART and MPI features using
benchmarks. A discussion of related work can be found in
Section 5 followed by our conclusions in Section 6.

2 INTRODUCTION TO DASH/DART

DASH aims at providing distributed data-structures and par-
allel algorithms operating on them. The DASH library fol-
lows the design principles of the C++ STL (standard tem-
plate library) to offer users a familiar interface and ensure
compatibility with existing algorithms, thus helping in the
parallelization of existing C++ codes.

At the heart of the DASH template library is a set of
distributed data-structures, including one- and multidimen-
sional arrays as well as lists and unordered maps. The distri-
bution of the data among the participating processes (called
units in DASH) can be controlled by user-defined patterns [10].

Elements in the distributed data structures are accessed
through iterators and overloaded C++ operators, hiding the
underlying put and get semantics in traditional value assign-
ment semantics. To facilitate efficient local data access and
thus avoid overhead, all DASH containers provide access to a
unit’s local elements through local iterators or raw pointers.

All communication operations in DASH are performed
through the DART library, which aims at providing a thin
abstraction of the underlying communication backend [28].
Using DART, global shared memory can be allocated as seg-
ments involving either all units of a team (collective alloca-
tion) or a single unit (local allocation). In contrast to MPI,
DART has no notion of access epoch. Instead, read and write
accesses can be performed between allocation and release

Joseph Schuchart, Roger Kowalewski, and Karl Fuerlinger

of a global memory segment at any time by any unit that
participated in the collective allocation or any unit in the
case of local allocation.

Global shared memory is addressed byte-wise through
DART global pointers, which are 128-bit wide descriptors
containing the team and segment IDs of the allocation as
well as the target unit ID and a 64-bit wide byte offset at
the target. Global pointers are globally unique and can thus
be copied between units in the same team to simplify the
construction of data structures like global linked lists. Local
allocations can be shared with any unit as they are not bound
to a specific team.

DART offers several communication operations, including
put, get, and atomic operations (element-wise accumulate,
fetch_and_op, compare_and_swap), which initiate the transfer
and require a flush operation for local or remote completion.
In addition, DART also offers blocking variants of put and
get, which guarantee local or remote completion of transfers
and are mainly meant for single-element accesses in DASH
containers. While blocking access is the default in DASH,
non-blocking element-wise operations can be performed by
using the async accessor proxy object of a container.

An example of the interactions between DASH, DART,
and MPI is provided in Figure 1. Here, a fixed-size array
is created and filled by a single unit using asynchronous
write operations, which only require local but not remote
completion to ensure that the iteration variable can be re-
used. It should be noted, that this is not the most efficient way:
a call to dash: :generate_with_index() or dash: :for_each()
on all units would have each unit to fill their local portion of
memory and would not require any communication. Remote
completion will be guaranteed after a call to arrary.flush()
or (as displayed in the example) a call to array.barrier(),
which combines a call to array. flush() with a barrier on the
team used to construct the array (the global team by default).

In addition to the communication operations outlined
above, DART also provides blocking collective reduction and
synchronization operations, hardware locality information,
team management functionality, and a distributed locking
mechanism to allow for user-controlled mutual exclusion of
conflicting accesses to global shared memory.

DASH distributed data structures can seamlessly be inte-
grated into existing MPI applications, giving users the oppor-
tunity for an incremental transition. Although DART only
supports basic data types, any trivially_copyable C++ type
can be used in DASH containers, which will trigger byte-wise
transfers in DART for any types other than basic datatypes.

3 MPI FEATURES AND CHALLENGES

DASH and DART rely on a range of features to be provided
by the underlying communication back-end. This section

Using MPI-3 RMA in the DASH PGAS Runtime

dash::Array<int> array(N);

» // initialize array

print(array[0]);

(a) DASH code

dart_team_memalloc_aligned();

dart_get_blocking();

(b) DART routines

HPC Asia 2018 WS, January 31, 2018, Chiyoda, Tokyo, Japan

MPI_Win_create_shared();
MPI_Win_attach();

// better: dash::generate() MPI_Allgather ();
if (dash::myid() == 0) {
for (int i = 0@; i < N; ++i) {
array.async[i] = i; dart_put_blocking_local(); MPI_Rput();
} MPI_Wait ();
3
array.barrier(); dart_flush_all(); MPI_Win_flush_all();
dart_barrier (); MPI_Barrier ();
2 if (dash::myid() == 1)

MPI_Rget ();
MPI_Wait ();

(c) MPI routines

Figure 1: DASH operations and the corresponding DART and MPI library routine calls.

provides an overview of the functionality offered by DART
and the corresponding MPI operations. Moreover, this sec-
tion outlines some of the challenges we have been facing in
designing and implementing DART based on MPI-3 RMA.

3.1 Process groups

DASH supports the concept of hierarchical process groups,
called teams, which are created by splitting existing teams
(starting from a single global team), either based on the num-
ber of sub-groups required or based on specific locality infor-
mation such as nodes or NUMA domains. The team manage-
ment functionality is part of DART, which leverages the flex-
ibility of MPI groups and communicators. A group of units in
DART is mapped to MPI groups and used to construct a team
in DART, which directly maps to an MPI communicator. The
convenience and flexibility of the MPI process group man-
agement functionality has made it easy for us to implement
the hierarchical team approach in DASH and DART.

3.2 Memory allocation

DASH and DART rely on the underlying communication
backend to allocate memory in the global address space. MPI
offers several ways for exposing local memory to other MPI
processes to form the global address space, e.g., by allocat-
ing and exposing memory in a single function call (using
MPI_Win_allocate) or by exposing pre-allocated memory (us-
ing MPI_Win_create).

In addition, MPI also offers so-called dynamic windows,
which can be created using MPI_Win_create_dynamic and al-
low attaching pre-allocated local memory on the fly using
MPI_Win_attach. In contrast to the non-dynamic windows,

the displacements in dynamic windows are relative to the
beginning of the local address space of the processes.

Moreover, MPI supports so-called shared memory win-
dows, which can be created across processes residing in the
same shared memory domain using MPI_Win_allocate_shared
and allow direct access to remote memory, e.g., using memcpy.
DART uses shared memory windows to optimize intra-node
put and get operations without going through the MPI li-
brary, potentially reducing transfer overheads [27]. To do
so, DART allocates a single dynamic window per team and
allocates shared windows for each segment, whose memory
is then attached to the dynamic window. Thus, memory al-
location only consists of creating a shared window, which
involves the subsets of processes running on the same nodes,
and globally communicating the displacements across the
team using a single team-wide MPI_Allgather. The details of
this shared memory optimization are outlined in [27].

The per-team dynamic window is locked for all processes
in the allocating team, thus relying on the passive target
mode of MPI. We expected this allocation scheme to yield
improved scalability over regular window allocation across
the full team. Section 4 will present measurements comparing
the different allocation strategies.

Unfortunately, so far not all MPI implementations provide
full support for shared memory windows, requiring DART
to maintain separate code paths for different MPI implemen-
tations and potentially specific library versions. In that case,
DART will still use dynamic windows but cannot shortcut
node-local communication through memcpy. However, there
is no standardized way for automatically determining the
used MPI implementation at compile time, thus leaving the
burden of disabling unsupported features on the user.

HPC Asia 2018 WS, January 31, 2018, Chiyoda, Tokyo, Japan

In its current implementation, global memory allocation
may become a performance-critical operation as some DASH
parallel algorithms rely on temporary allocations to perform
reductions on intermediate results of derived data types, e.g.,
finding the position of the minimum element in an array of
comparable derived datatypes. DART thus has to provide a
lightweight allocation process, which has motivated our use
of dynamic MPI windows.

3.2.1 Local memory alignment. Special care should be
given to the local alignment of global memory allocated
through MPIL The MPI standard does not mandate any align-
ment requirements for memory allocated through MPI li-
brary routines. While the standard recommends allocating
memory through MPI library routines, we have observed
only natural alignment to be guaranteed, i.e., alignment suit-
able for the largest native data type (8 byte on 64-bit ma-
chines). Users requiring stricter alignment guarantees, e.g.,
to fully exploit the potential of vectorization, are left on their
own to guarantee proper alignment. As stated above, DART
allocates global memory using MPI_Win_allocate_shared and
thus cannot easily use system routines such as posix_memalign
for allocation of aligned memory. We plan to add support
for user-defined alignments in a future version of DART.

3.2.2 System shared memory allocation. MPI implemen-
tations rely on system shared memory to optimize intra-
node communication even on regular windows, i.e., on each
node a shared memory segment is allocated during a call
to MPI_Win_alloc to which all node-local processes attach.
The GNU/Linux operating system allows to share memory
between processes running on the same node by mapping
a shared memory object into each process’s address space
using mmap(2) with the flag MAP_SHARED. The shared mem-
ory object can be allocated through POSIX shared memory
(shm_open(3)) or an arbitrary file created by open(2). Alterna-
tively, SysV shared memory can be used to allocate a shared
memory object (shmget(2)) and attach it to the process’s
address space (shmat(2)).

The POSIX standard does not mandate how shared mem-
ory objects allocated through shm_open should be handled in-
ternally. On GNU/Linux, a call to shm_open commonly creates
a file in a dedicated filesystem (commonly tmpfs mounted un-
der /dev/shm). The size of the shared memory object can be
configured using ftruncate(2), which will grow (or shrink)
the file. The file is immediately unlinked and subsequently
deleted as soon as all references to it have disappeared.

It is left to the system administrator to configure the size of
the filesystem mounted at /dev/shm, which effectively limits
the total size of shared memory allocated through POSIX shm.
Since tmpfs supports sparse files, ftruncate allows growing
files beyond the size limits of the underlying filesystem and
memory pages will only be physically allocated as soon as the

Joseph Schuchart, Roger Kowalewski, and Karl Fuerlinger

pages are accessed, i.e., as soon as the application accesses
the shared memory segment. Oversubscribing the filesystem
leads to the application being terminated by a SIGBUS without
the cause being immediately visible to the user.

Unfortunately, the POSIX shm interface does not pro-
vide means of portably checking the limits of shared mem-
ory allocations and users commonly cannot influence the
size of the underlying tmpfs filesystem on GNU/Linux. In
contrast to that, the SysV interface under GNU/Linux has
clearly defined limits that can be queried through entries
in /proc/sys/kernel/, which can be used to catch (at least
some) cases of shared memory oversubscription. However,
in case of unexpected failures, SysV shared memory objects
may persist beyond the life-time of the application, effec-
tively using up memory that can only be detected using the
ipcs command line tool.

At the time of this writing, Open MPI allocates shared
memory by mapping a file created under /tmp (or a path
provided by the user) after checking for sufficiently available
space. MPICH, on the other hand, relies on POSIX shm by
default with a compile-time option for SysV shm. In both
cases, we have experienced problems on systems with lim-
ited /tmp and /dev/shm filesystems, effectively limiting the
amount of memory that can be allocated in DASH distributed
data structures and - in the case of POSIX shm - leading
to hard-to-debug crashes reported by users. It is thus im-
perative that HPC system administrators are aware of the
caveats of shared memory and provide sufficent resources for
both /tmp and /dev/shm filesystems, ideally allowing users
to allocate (nearly) all memory available on the node.

3.3 Data transfer and memory consistency

The MPI implementation of DART relies heavily on commu-
nication operations provided by MPI, with the notable ex-
ception of intra-node communication described above. MPI
offers two basic communication operations, MPI_Put to write
data to the target and MPI_Get to read from it. Both operations
may be non-blocking and their completion is only guaran-
teed after a call to one of the MPI_Win_flush functions, which
distinguish between local completion (the local memory can
be reused) and remote completion (the data has been written
to the remote memory).

Based on these MPI primitives, DART offers a set of put
and get operations. The basic operations dart_get and dart_-
put provide the same semantics as their MPI counter-parts.
The operations are guaranteed to be complete after a call to
the corresponding DART flush operation, i.e., dart_flush for
remote and dart_flush_local for local completion.

To ensure compatibility of DASH data structures with se-
rial STL algorithms, the default access mode for elements

Using MPI-3 RMA in the DASH PGAS Runtime

in DASH containers has to be blocking read-access and im-
mediate remote completion on write access to ensure that
written values are visible to subsequent reads. To avoid the
overhead of two separate DART calls for put/get and flush,
DART offers blocking variants such as dart_get_blocking
and dart_put_blocking. The former combines MPI_Rget and
MPI_Wait to wait for the completion of the transfer. Unfortu-
nately, ensuring remote completion of an MPI_Put operation
in dart_put_blocking requires an MPI flush call since wait-
ing for a request returned from MPI_Rput only ensure local
completion. This makes it effectively impossible to mix block-
ing put and other non-blocking data transfers on the same
window, as the flush operation completes all previously ini-
tiated non-blocking operations.

Similar to MPL, DART communication calls accept the
type and number of data elements in the buffer. In contrast
to MPI, the parameter describing the number of elements
N is of type size_t instead of int, allowing for transfers
of data beyond 2 GB in a single call (on 64-bit machines).
Internally, such large transfes are split into two operations:
the transfer of | N/2%! | blocks of size 23! elements copied
using pre-allocated MPI types followed by the transfer of the
remaining elements.

Since DASH relies heavily on templates and compile-time
optimizations using constexpr, the basic DART-types are
constants to which C++ integral types are mapped at compile-
time. At the same time, DART also supports the creation of
strided and indexed types for efficient non-contiguous data
access, which are dynamically created and mapped directly
to MPI types. Hence, types in DASH are expressed as an
integral value that can store both constant values as well as
opaque pointers to dynamically created types.

3.4 Thread-safety

One of the design goals of DASH has been thread-safety,
which allows DASH applications to leverage the performance
and productivity of thread-based parallelization techniques
such as OpenMP. Thread-support in DASH and DART can
be configured at compile-time. If enabled, DART initializes
the underlying MPI runtime using MPI_Init_thread and de-
termines the thread-support level provided. The four thread-
support levels defined by the MPI standard are mapped to
either DART_THREAD_SERIALIZED or DART_THREAD_CONCURRENT,
leaving out some of the semantic complexities of MPI.

The runtime guarantees that access to DART functionality
is thread-safe, provided that there are no race-conditions on
shared data, e.g., thread-parallel accesses to non-overlapping
global memory regions are thread-safe. However, the out-
come of concurrent or unsynchronized put operations to the
same memory location is undefined.

HPC Asia 2018 WS, January 31, 2018, Chiyoda, Tokyo, Japan

There is a notable exception to these thread-safety rules
in DASH and DART: any collective operation on the same
team cannot be considered thread-safe. In particular, this
includes team management and global memory allocation
as well as synchronization and reduction operations on the
same team. As a consequence, some DASH distributed algo-
rithms may not be called on the same container by multiple
threads as they rely on reduction operations or temporary
global memory allocation. Where sensible, we will consider
introducing variants of these algorithms that are thread-safe
even if called on the same container or team.

Overall, this limitation is coherent with (and dictated by)
the limitations outlined in chapter 12 of the MPI 3.1 standard.

3.5 Asynchronous Progress of One-Sided
Communication

As described in Section 3.2, DART relies on the passive target
mode, which enables participating units to asynchronously
read or write globally shared data without involving the
respective target unit, i.e., the memory owner. This model
naturally matches PGAS semantics and provides high po-
tential for computation-communication overlap in scientific
and data-intensive applications. Ideally, MPI libraries asyn-
chronously progress these one-sided operations even if the
target unit is blocked in computation and thus does not call
any MPI routine. This is best done by exploiting the RDMA-
capabilities of today’s high-performance networks.
However, MPI implementations commonly support less
advanced networks that do not support RDMA as well. On
some of these platforms we have observed communication
operations at the source unit to stall if the target unit does not
call MPI routines. According to the MPI standard “implemen-
tations must guarantee that a process makes progress on all
enabled communications it participates in, while blocked on
an MPI call” [9, Chapter 11.7.3]. While it is immediately clear
that a process blocked on a barrier should make progress
on imcoming RMA operations, the wording is less clear for
local operations, e.g., busy-waiting on a signal using MPI_Get
combined with a local flush. In the past, we have observed
at least one implementation to not trigger remote progress
in this use-case, effectively leading to livelocks. While, after
reporting, these implementations now support progress in
these cases, a clarification on which MPI operations trigger
the progress engine would be desirable from a user’s per-
spective. Moreover, an interface for querying the progress
semantics of the current platform and implementation and
for explicitly triggering the progress engine would be help-
ful for developers of PGAS abstractions based on the MPI-3
RMA standard to automatically adjust the behavior of the
runtime to the characteristics of the given platform.

HPC Asia 2018 WS, January 31, 2018, Chiyoda, Tokyo, Japan

Table 1: Test system overview.

System CPU Network Compiler ~ MPI

Hazel Hen 2x E5-2680v3 12C Cray Aries GCC6.3.0 CCE 853
SuperMUC 2 x E5-2697v3 IB FDR14 ICC 16.04 IBMPOE 1.4
Linux-Cluster 1 x E5-2697v3 IB FDR14 ICC 16.04 OpenMPI 2.0.2

4 EVALUATION

We have used the OSU MPI benchmark suite to implement
benchmarks for measuring the latency of global memory
allocation in MPI, an aspect of MPI RMA that has not been
previously covered by the suite. The code is modeled after the
existing MPI-RMA latency measurement benchmarks and
is available on GitHub at https://github.com/dash-project/
dash-bench.! An example kernel for measuring the latency
of MPI window allocation is presented in Figure 2, which is
similar to the allocation process described in Section 3.2. We
also added support for measuring communication latencies
in DART in order to determine the induced overhead.

We conducted our measurements on three different sys-
tems: the Cray XC40 ‘Hazel Hen’ installed at High Perfor-
mance Computing Center Stuttgart (HLRS) as well as the
IBM iDataPlex system ‘SuperMUC’ (phase 2) and a com-
modity GNU/Linux cluster, both installed at the Leibniz Su-
percomputing Center (LRZ). The system specifications are
summarized in Table 1. All codes were compiled using either
the GNU compiler collection (GCC) or Intel compiler (ICC).
Unless noted otherwise, we have enabled support for the Dis-
tributed Memory Application (DMAPP) API [22] on Hazel
Hen, which measurably improves MPI-RMA performance.

4.1 Memory Allocation Overhead

As described in Section 3.2, some DASH algorithms rely on
temporary global memory for reduction operations. We were
therefore interested in measuring the latency of global mem-
ory allocation in different MPI implementations to determine
the best strategy, i.e., whether to use dynamic or regular
windows. We therefore measured the latency of allocating
MPI windows of various sizes using different numbers of
processes and included three different allocation strategies:
Win_allocate, Win_create, and Win_dynamic. The presented
times reflect the average of 10 iterations performed in one
benchmark run, thus following the OSU benchmark pattern.

The first two strategies simply use MPI_Win_allocate and
MPI_Win_create with a buffer allocated through malloc, re-
spectively. We have observed mostly similar results for these
two strategies and thus refrain from presenting results for
the latter. The third strategy uses a pre-allocated dynamic
MPI window and allocates shared windows, whose memory

The original MPI benchmark suite from the Ohio State University is avail-
able at http://mvapich.cse.ohio-state.edu/benchmarks/.

1

18

19

Joseph Schuchart, Roger Kowalewski, and Karl Fuerlinger

for (size = 0; size <= MAX_SIZE; size = size x 2) {

for (i = 0; i < opts.skip + opts.loop; i++) {
if (i == opts.skip) t_start = MPI_Wtime ();
disp_set = malloc(comm_size * sizeof (MPI_Aint));
MPI_Win_allocate_shared(size, 1, win_info,
sharedmem_comm, &baseptr, &win);
if (size > 0)
MPI_Win_attach(dynamic_win, baseptr, size);
MPI_Get_address(baseptr, &disp_local);
MPI_Allgather (&disp_local, 1, MPI_AINT,

disp_set, 1,
if (size > 0)
MPI_Win_detach (dynamic_win,
MPI_Win_free (&win);
free(disp_set);
3
t_end = MPI_Wtime ();
print_latency(rank,

MPI_AINT, MPI_COMM_WORLD);

baseptr);

size);

}

Figure 2: Kernel for measuring the latency of allocat-
ing an MPI window using shared memory windows.

is attached to the dynamic window and the global offset com-
municated using MPI_Allgather. This strategy is currently
the default in DART, as described in Section 3.2.

The results reveal significant differences in latency, both
between the three strategies as well as between the MPI
implementations under test. The most striking result is the
memory allocation latency in Open MPI 2.0.2, presented in
Figures 3a and 3b. Results for Win_allocate are displayed
in Figure 3a, which shows a significant difference between
single-node and multi-node allocations, the latter exhibit-
ing latencies of at least 100 ms and rising up to 600 ms for
32 MByte windows on 1400 processes. With Win_dynamic, the
latencies are notably lower than with Win_allocate, achiev-
ing between 0.4 ms and 2 ms for smaller allocations. However,
a steep increase starting at 32 KiB is visible, leading to 200 ms
for 16 MiB. We attribute the lower allocation latencies to the
fact that memory pages attached to dynamic windows are not
registered with the Infiniband device. Neither are allocated
windows if the application is running on a single node.

The latencies for IBM MPI measured on SuperMUC are de-
picted in Figures 3c and 3d. Here, the latency of Win_dynamic
isless dependent on the process count than with Win_allocate.
The latter shows lower latencies for lower process counts
(up to 1400 processes) but higher latencies for larger process
counts, reaching up to ~5 ms compared to more than 10 ms
for 5600 processes.

With Cray MPI, depicted in Figures 3e and 3f, the laten-
cies for Win_allocate appear similar to the latencies of IBM
MPI using Win_dynamic, ranging from 1.6 ms to 3.3 ms. Using

https://github.com/dash-project/dash-bench
https://github.com/dash-project/dash-bench
http://mvapich.cse.ohio-state.edu/benchmarks/

Using MPI-3 RMA in the DASH PGAS Runtime

HPC Asia 2018 WS, January 31, 2018, Chiyoda, Tokyo, Japan

T T T T T T T T T T T T T T T
s Processes s Processes s Processes
10° F 28 (1x28) —— 3§ 10° 28 (1x28) —— 3 10°% F 24 (1x24) —— 7
280 (10x28) 280 (10x28) 240 (10x24)
107 b 560 (20x28)] 107 L 560 (20x28)] 107 L 480 (20x24)]
840 (30x28) 840 (30x28) 600 (30x24)
1400 (50x28) 1400 (50x28) 1200 (50x24)
5106 £ 4 G108 2800 (100x28) E G108 2400 (100x24) E
§ § 5600 (200x28) —e— § 4800 (200x24) —o—
>10% & 4 >10% k E >10% k +
2 2 2
%104 L 4 %104 S PP AP R A ey %104 L]
e et eteeteetteoeeesteoeesee
103 F 4 103 | 4 103 | 4
—————
102 4 102 | E 102 | 4
et
101 1 1 1 1 1 101 1 1 1 Il Il 101 1 1 1 1 1
20 25 210 215 220 20 25 210 215 220 20 25 210 215 220
Per-process Allocation Size [Bytes] Per-process Allocation Size [Bytes] Allocation Size [Bytes]
(a) Open MPI: Win_allocate (c) IBM MPI: Win_allocate (e) Cray MPI: Win_allocate
T T T PI T T T T PI T T T T PI T
rocesses rocesses rocesses
108 | 28 (1x28) —— 3 108 ¢ 28 (1x28) —— 3 108 | 24 (1x24) —— 3
280 (10x28) 280 (10x28) 240 (10x24)
107 b 561 (20x28)] 107 L 560 (20x28)] 107 L 480 (20x24)]
840 (30x28) 840 (30x28) 600 (30x24)
1400 (50x28) 1400 (50x28) 1200 (50x24)
5108 4 5 10° 2800 (100x28) 3 5106 & 2400 (100x24) E
§ § 5600 (200x28) —e— § 4800 (200x24) —o—
105 F e <105 F 4 <105 F]
2 4 2 2
.04 4 2104 .04
2104 F 7 4 2104 4 2104 | .
- / - 0e0000p0®e® 000000000000 —
4 . eesseeesesscsetosesetesees
103 (. E 103 | 4 103 F 4
B e e e
102 | 4 10% F E 102 | 4
101 1 1 1 1 1 101 1 1 1 1 1 101 1 1 1 1 1
20 25 210 215 220 20 25 210 215 220 20 25 210 215 220

Per-process Allocation Size [Bytes]

(b) Open MPI: Win_dynamic

Per-process Allocation Size [Bytes]

(d) IBM MPI: Win_dynamic

Allocation Size [Bytes]

(f) Cray MPI: Win_dynamic

Figure 3: Latency of different window allocation strategies.

the Win_dynamic strategy on Hazel Hen, we observe almost
no influence of the number of processors on the allocation
latency, marking it stable at around 2 ms. Moreover, we do
not observe any influence of the per-process allocation size
in our benchmark.

4.2 Communication Latency

To complement the picture drawn in the previous section,
we provide latency measurements for DART as well as MPI
communication with both allocated and dynamic windows,
i.e., using the strategies Win_allocate and Win_dynamic. The
measured times reflect the average of 100 or 10 iterations,
for sizes below and above 8 KiB, respectively. As before, we
conducted measurements for Open MPI (Figures 4a and 4b),
IBM MPI (Figures 4c and 4d), and Cray MPI (Figures 4e and 4f)
for both intra- and inter-node communication. All DART
measurements include the time for remote completion.

For intra-node communication, the benefit of DART’s
shared memory window optimization (as described in Sec-
tion 3.2) are only visible for Open MPI and Cray MPI because

we were unable to use shared memory windows with IBM
MPL. However, it appears that using allocated windows in
Open MPI for intra-node communication induces only mar-
ginal overhead when used with MPI_Rput and MPI_Rget (“al-
locate, req” variant). DART on the other hand yields around
1 us for get and higher for put even with shared memory
optimization enabled. We will have to further investigate this
discrepancy as there seems to be some constant overhead
induced by DART when using Open MPIL. On Hazel Hen,
the shared memory optimization in DART outperforms the
MPI implementation for get operations by a factor of two.
However, we have to investigate the discrepancies between
get and put on this machine since the latter does not seem
to benefit from the shared memory optimization.

For inter-node communication, a clear difference emerges
between allocated and dynamic windows. It appears that
dynamic windows incur higher latencies with all tested im-
plementations, amounting to factor 3-4 x for small transfer
sizes. For larger transfer sizes, this difference is negligible
due to the generally higher latencies. We attribute that to
the previously mentioned lack of registration of the memory

HPC Asia 2018 WS, January 31, 2018, Chiyoda, Tokyo, Japan

Joseph Schuchart, Roger Kowalewski, and Karl Fuerlinger

T T T T T T T T T T T T
DART Put — DART Put — DART Put —
104 | DART Get F 104 b DART Get 4 104 | DART Get 4
MPI Put (dynamic, flush) —e&— MPI Put (dynamic, flush) —&— MPI Put (dynamic, flush) —&—
MPI Get (dynamic, flush) - MPI Get (dynamic, flush) - (m MPI Get (dynamic, flush) -
103 | MPI Put (allocate, flush) - -o - E 103 & MPI Put (allocate, flush) - -o - E 103 | MPI Put (allocate, flush) - -o - z
MPI Get (allocate, flush) = MPI Get (allocate, flush) - MPI Get (allocate, flush) =
iy MPI Put (allocate, req) L] o) o)
& 102 F MPIGet (allocate, req) = % E 2 102 E 2 E
2 2 2
9 9 g
4 1L 4 4
2 g ' g
© © ©
- g})
4 100 b 4 4
eemgagagunei? y
J 101 b J 101 b J
| &
ssnnsaad®
10-2 1 1 1 1 1 10-2 1 1 1 1 10-2 1 1 1 1 1
20 25 210 215 220 20 25 215 220 20 25 210 215 220
Transfer Size [Bytes] Transfer Size [Bytes] Transfer Size [Bytes]
(a) Open MPI: Intra-node (c) IBM MPI: Intra-node (e) Cray MPI: Intra-node
T T T T T T T T T T T T
DART Put ——<— DART Put ——<— DART Put ——<—
104 b DART Get F 104 £ DART Get 4 104 b DART Get E
MPI Put (dynamic, flush) —&— MPI Put (dynamic, flush) —=— MPI Put (dynamic, flush) —=—
MPI Get (dynamic, flush) - MPI Get (dynamic, flush) - / MPI Get (dynamic, flush) - /;
103 £ MPI Put (allocate, flush) - - - E 103 £ MPI Put (allocate, flush) - -o - E 103 £ MPI Put (allocate, flush) - -o - A
MPI Get (allocate, flush) - -= MPI Get (allocate, flush) - -= MPI Get (allocate, flush) - -=
o MPI Put (allocate, req) L] o))
@ 102 E MPIGet (allocate, req) = 3 2 102 f E 8 E
= 2 2
9 3 3
g 10 g 3 § 10 Feaassasieaneh E § 1
3 ERREE A aaREt g L
100 E 100 E E
[ER RS BN
107 E 4 101 E E 101 £ 4
10-2 1 1 1 1 1 10-2 1 1 1 1 10-2 1 1 1 1 1
20 25 210 215 220 20 25 215 220 20 25 210 215 220

Transfer Size [Bytes]

(b) Open MPI: Inter-node

Transfer Size [Bytes]

(d) IBM MPI: Inter-node

Transfer Size [Bytes]

(f) Cray MPI: Inter-node

Figure 4: Latency of put and get operations in DART and MPL

pages with the network device, which prevents RDMA and
requires a software protocol to be used.

An interesting effect can be observed with Open MPI:
the latency of MPI_RPut in combination with MPI_Wait (“MPI
Put (allocate, req)”) is significantly lower for small transfer
sizes up to 256 B than the combination of put and flush or
flush_local. We consider this a strong argument for DART
to offer multiple blocking put operations as described in
Section 3.3, e.g., one that only guarantees local completion.
However, we have not observed similar differences with
other implementations.

In general, DART seems to incur a small additional over-
head compared to the raw MPI operations. However, we are
still in the process of optimizing DART, trying to etch out
remaining sources of overhead.

4.3 Discussion

Our measurements presented above have shown heteroge-
neous performance across different MPI implementations
using the two allocation strategies Win_allocate and Win_-
dynamic. While all implementations generally provide lower

latencies for dynamic window allocation in combination with
shared memory windows, the communication latency is sig-
nificantly higher for dynamic windows across all implemen-
tations. In contrast, regular window allocations (Win_allocate)
yield higher allocation latencies for larger numbers of pro-
cesses with one implementation going beyond 100 ms per
allocation. These results confirm our initial expectation ex-
pressed in Section 3.2 that segment allocation in DART in-
duces lower latencies if done through dynamic and shared
memory windows compared to regular window allocations.
However, the results of our communication latency mea-
surements require us to reconsider the default allocation
strategy in DART. On the one hand, the lower allocation la-
tencies are better suited for temporary allocations in DASH.
However, frequent allocations induce noticeable overhead
due to the general latency in the millisecond range. On the
other hand, increased inter-node communication latencies of
dynamic windows may have a bigger impact than temporary
allocation latencies on most applications. Moreover, the im-
pact of the shared memory optimization will be diminished

Using MPI-3 RMA in the DASH PGAS Runtime

in multi-threaded DASH applications. Hence, choosing the
right allocation strategy is an application-specific decision.

Even without frequent global memory allocations these
high allocation latencies can become problematic. In other
benchmarks (not depicted here), we have observed latencies
in the multi-second range for large allocations. Extrapola-
tion of our measurements to current and future large-scale
systems indicate severe scalability issues in some MPI imple-
mentation that should be addressed on the path to Exascale.

A proposal made in the MPI Forum? for a future version
of the MPI standard to allow shared memory access even
on regular windows would enable us to combine both low-
latency inter-node communication with application-level
optimization for intra-node data exchange.

As a consequence of our measurements presented above,
we have extended DART to also support allocated windows,
which can be chosen at compile-time. This will prevent the
usage of the shared memory optimization but should yield
lower latencies between units on different nodes. We will also
consider alternatives to allocating temporary global mem-
ory in DASH algorithms, e.g., using pre-allocated scratch
space. We hope that our measurements raise awareness of
this performance heterogeneity among both MPI-RMA im-
plementors and application developers.

5 RELATED WORK

Several different approaches towards the PGAS program-
ming paradigm exist today, which can be classified into three
major categories: newly designed PGAS languages, exten-
sions to existing languages, and library-based approaches.
The set of new languages supporting the PGAS program-
ming paradigm include Chapel [4] and X10 [6]. However,
forcing users to port whole applications comes with a high
entry barrier and no incremental transition path.

Several approaches have been built as an extension to
existing programming languages, including Unified Parallel
C (UPC) [23] and Fortran 2008 co-arrays (CAF) [21]. Efforts
have been made to provide an implementation of CAF that
is built on MPI-3 RMA operations [8, 24]. The XcalableMP
(XMP [18]) approach adds PGAS functionality to existing C
or Fortran applications through compiler pragmas, which
are mapped to MPI-3 RMA primitives.

Among the library-based approaches are OpenShmem [5],
GlobalArrays [20], as well as the MPI-3 RMA extensions,
which all provide a C interface for remote memory access.
Both OpenShmem and GlobalArrays have been ported to
run on top of MPI-RMA [7, 15].

Several approaches make use of C++11 language features
to provide access to global data without explicit API function
calls. Among them are UPC++ [26] and Co-array C++ [17]

Zhttps://github.com/mpi-forum/mpi-forum- historic/issues/397

HPC Asia 2018 WS, January 31, 2018, Chiyoda, Tokyo, Japan

together with the DASH library. We refer to the DASH
overview paper for a detailed discussion of the DASH ap-
proach and it’s comparison with other PGAS approaches [11].

As the runtime system for DASH, DART can be seen as a
member of this category as it provides an abstraction of RMA
operations provided by existing PGAS libraries, e.g., MPI-3
RMA operations. The initial design and optimizations using
the MPI-3 shared memory extensions have been described
in [28] and [27].

Several works have also conducted an evaluation of the
performance of MPI-RMA operations, e.g., for MPI-2 [13]
and MPI-3 [16].

6 CONCLUSION AND FUTURE WORK

In this paper, we have presented the general requirements of
the DASH RunTime (DART) for its underlying PGAS commu-
nication backend and described some of the design decisions.
Moreover, the paper discusses details on some of our recent
experiences in the implementation of DART based on MPI-3
RMA, including our approach to memory consistency, global
memory allocation strategies, and progress related issues.
We have extended the OSU micro-benchmark suite to include
measurements of the performance characteristics of differ-
ent window allocation strategies in MPI, including memory
allocation latency and communication latency. The results
show significant differences in both metrics, with the general
trend towards lower allocation and higher communication
latencies when using dynamic windows.

Based on the measurements presented in this paper, we
will reconsider our use of dynamic and shared memory win-
dows in DART and try to find ways to adapt DART to the
performance characteristics of the underlying MPI imple-
mentation. As a first step, we have made the use of dynamic
windows in DASH optional for our upcoming release, al-
lowing users to adapt DART to the application’s needs. In
addition, future work will include further optimization of
DART and additional benchmarks for DART communication
operations in the framework of the OSU benchmark suite.

An important aspect of DART is the ability to ensure asyn-
chronous progress of communication operations. We will
thus closely monitor the developments of the MPI standard
and adapt our implementation accordingly. A systematic
analysis of the capabilities of current MPI implementations
and networks to asynchronously progress RMA operations
might yield important information for the development of a
well-designed progress model in DART. We will also consider
using an alternative communication backend in addition to
MPI to test the design decisions made so far against different
RMA implementations, e.g., UCX and GASPI.

Finally, despite the issues outlined in this paper, we are
confident that using MPI-3 RMA as the basis for the DASH

https://github.com/mpi-forum/mpi-forum-historic/issues/397

HPC Asia 2018 WS, January 31, 2018, Chiyoda, Tokyo, Japan

PGAS abstraction has been a sensible choice as it opens
the door for an incremental transition of traditional MPI
applications to DASH and allows for easy porting to new
systems that provide a compatible MPI implementation.

ACKNOWLEDGMENTS

We would like to thank the members of the DASH team and
gratefully acknowledge funding by the German Research
Foundation (DFG) through the German Priority Programme
1648 Software for Exascale Computing (SPPEXA) in the
SmartDASH project.

REFERENCES

[1] Saman Amarasinghe, Dan Campbell, William Carlson, Andrew Chien,
William Dally, EImootazbellah Elnohazy, Mary Hall, Robert Harrison,
William Harrod, Kerry Hill, et al. 2009. Exascale software study: Soft-
ware challenges in extreme scale systems. DARPA IPTO, Air Force
Research Labs, Tech. Rep (2009).

[2] Roberto Belli and Torsten Hoefler. 2015. Notified access: Extending
remote memory access programming models for producer-consumer
synchronization. In Parallel and Distributed Processing Symposium
(IPDPS), 2015 IEEE International. IEEE.

[3] DanBonachea and Jason Duell. 2004. Problems with Using MPI 1.1 and
2.0 As Compilation Targets for Parallel Language Implementations.
Int. §. High Perform. Comput. Netw. 1, 1-3 (Aug. 2004). https://doi.org/
10.1504/]JHPCN.2004.007569

[4] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. 2007.
Parallel Programmability and the Chapel Language. International
Journal of High Performance Computing Applications 21 (August 2007).

[5] Barbara Chapman, Tony Curtis, Swaroop Pophale, Stephen Poole, Jeff
Kuehn, Chuck Koelbel, and Lauren Smith. 2010. Introducing OpenSH-
MEM: SHMEM for the PGAS community. In Proceedings of the Fourth
Conference on Partitioned Global Address Space Programming Model.

[6] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-
awa, Allan Kielstra, Kemal Ebcioglu, Christoph Von Praun, and Vivek
Sarkar. 2005. X10: an object-oriented approach to non-uniform cluster
computing. ACM Sigplan Notices 40, 10 (2005).

[7] J. Dinan, P. Balaji, J. R. Hammond, S. Krishnamoorthy, and V. Tipparaju.

2012. Supporting the Global Arrays PGAS Model Using MPI One-Sided

Communication. In IEEE 26th International Parallel and Distributed

Processing Symposium. https://doi.org/10.1109/IPDPS.2012.72

Alessandro Fanfarillo, Tobias Burnus, Valeria Cardellini, Salvatore

Filippone, Dan Nagle, and Damian Rouson. 2014. OpenCoarrays:

Open-source Transport Layers Supporting Coarray Fortran Compilers.

In Proceedings of the 8th International Conference on Partitioned Global

Address Space Programming Models. ACM. https://doi.org/10.1145/

2676870.2676876

[9] MPIForum. 2015. MPI: A Message-Passing Interface Standard. Standard.

http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

Tobias Fuchs and Karl Fiirlinger. 2016. Expressing and Exploiting Multi-

Dimensional Locality in DASH. In Software for Exascale Computing-

SPPEXA 2013-2015. Springer.

Karl Fuerlinger, Tobias Fuchs, and Roger Kowalewski. 2016. DASH:

A C++ PGAS Library for Distributed Data Structures and Parallel

Algorithms. In 2016 IEEE 18th International Conference on High Per-

formance Computing and Communications. https://doi.org/10.1109/

HPCC-SmartCity-DSS.2016.0140

[12] Antonio Gémez-Iglesias, Dmitry Pekurovsky, Khaled Hamidouche, Jie

Zhang, and Jérome Vienne. 2015. Porting Scientific Libraries to PGAS

—
[o)
=

(10

=

[11

—

Joseph Schuchart, Roger Kowalewski, and Karl Fuerlinger

in XSEDE Resources: Practice and Experience. In Proceedings of the
2015 XSEDE Conference: Scientific Advancements Enabled by Enhanced
Cyberinfrastructure (XSEDE ’15). ACM.

[13] William D. Gropp and Rajeev Thakur. 2007. Revealing the Performance
of MPI RMA Implementations. Springer Berlin Heidelberg. https:
//doi.org/10.1007/978-3-540-75416-9_38

[14] Daniel Griinewald and Christian Simmendinger. 2013. The GASPI
API specification and its implementation GPI 2.0. In 7th International
Conference on PGAS Programming Models.

[15] Jeff R. Hammond, Sayan Ghosh, and Barbara M. Chapman. 2014. Imple-
menting OpenSHMEM Using MPI-3 One-Sided Communication. Springer
International Publishing. https://doi.org/10.1007/978-3-319-05215-1_4

[16] Nathan Hjelm. 2014. Optimizing One-sided Operations in Open MPL
In Proceedings of the 21st European MPI Users’ Group Meeting (Eu-
roMPI/ASIA °14). ACM. https://doi.org/10.1145/2642769.2642792

[17] Troy A Johnson. 2013. Coarray C++. In 7th International Conference
on PGAS Programming Models.

[18] J. Lee and M. Sato. 2010. Implementation and Performance Evaluation
of XcalableMP: A Parallel Programming Language for Distributed
Memory Systems. In 2010 39th International Conference on Parallel
Processing Workshops. https://doi.org/10.1109/ICPPW.2010.62

[19] Jarek Nieplocha and Bryan Carpenter. 1999. ARMCI: A portable remote
memory copy library for distributed array libraries and compiler run-
time systems. In Parallel and Distributed Processing. Springer.

[20] Jaroslaw Nieplocha, Robert J Harrison, and Richard J Littlefield. 1994.
Global Arrays: a portable shared-memory programming model for
distributed memory computers. In Proceedings of the 1994 ACM/IEEE
conference on Supercomputing.

[21] Robert W. Numrich and John Reid. 1998. Co-array Fortran for parallel
programming. SIGPLAN Fortran Forum (Aug. 1998). https://doi.org/
10.1145/289918.289920

[22] Monika ten Bruggencate and Duncan Roweth. 2010. DMAPP - An
API for One-sided Program Models on Baker Systems. In 52. Cray User
Group (CUG).

[23] UPC Consortium. 2005. UPC Language Specifications, v1.2. Tech Report
LBNL-59208. Lawrence Berkeley National Lab. http://www.gwu.edu/
~upc/publications/LBNL-59208.pdf

[24] Chaoran Yang, Wesley Bland, John Mellor-Crummey, and Pavan Balaji.
2014. Portable, MPI-interoperable Coarray Fortran. In Proceedings of
the 19th ACM SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming (PPoPP ’14). ACM. https://doi.org/10.1145/2555243.
2555270

[25] Katherine Yelick, Dan Bonachea, Wei-Yu Chen, Phillip Colella, Kaushik
Datta, Jason Duell, Susan L. Graham, Paul Hargrove, Paul Hilfinger,
Parry Husbands, Costin Iancu, Amir Kamil, Rajesh Nishtala, Jimmy Su,
Michael Welcome, and Tong Wen. 2007. Productivity and Performance
Using Partitioned Global Address Space Languages. In Proceedings
of the 2007 International Workshop on Parallel Symbolic Computation
(PASCO *07). ACM.

[26] Yili Zheng, Amir Kamil, Michael B Driscoll, Hongzhang Shan, and
Katherine Yelick. 2014. UPC++: a PGAS Extension for C++. In Parallel
and Distributed Processing Symposium, 2014 IEEE 28th International.

[27] Huan Zhou, Kamran Idrees, and José Gracia. 2015. Leveraging MPI-3
Shared-Memory Extensions for Efficient PGAS Runtime Systems. In
Euro-Par 2015: Parallel Processing - 21st International Conference on
Parallel and Distributed Computing, Vienna, Austria, August 24-28, 2015,
Proceedings. https://doi.org/10.1007/978-3-662-48096-0_29

[28] Huan Zhou, Yousri Mhedheb, Kamran Idrees, Colin Glass, José Gracia,
Karl Fiirlinger, and Jie Tao. 2014. DART-MPI: An MPI-based Imple-
mentation of a PGAS Runtime System. In The 8th International Confer-
ence on Partitioned Global Address Space Programming Models (PGAS).
https://doi.org/10.1145/2676870.2676875

https://doi.org/10.1504/IJHPCN.2004.007569
https://doi.org/10.1504/IJHPCN.2004.007569
https://doi.org/10.1109/IPDPS.2012.72
https://doi.org/10.1145/2676870.2676876
https://doi.org/10.1145/2676870.2676876
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0140
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0140
https://doi.org/10.1007/978-3-540-75416-9_38
https://doi.org/10.1007/978-3-540-75416-9_38
https://doi.org/10.1007/978-3-319-05215-1_4
https://doi.org/10.1145/2642769.2642792
https://doi.org/10.1109/ICPPW.2010.62
https://doi.org/10.1145/289918.289920
https://doi.org/10.1145/289918.289920
http://www.gwu.edu/~upc/publications/LBNL-59208.pdf
http://www.gwu.edu/~upc/publications/LBNL-59208.pdf
https://doi.org/10.1145/2555243.2555270
https://doi.org/10.1145/2555243.2555270
https://doi.org/10.1007/978-3-662-48096-0_29
https://doi.org/10.1145/2676870.2676875

	Abstract
	1 Introduction
	2 Introduction to DASH/DART
	3 MPI Features and Challenges
	3.1 Process groups
	3.2 Memory allocation
	3.3 Data transfer and memory consistency
	3.4 Thread-safety
	3.5 Asynchronous Progress of One-Sided Communication

	4 Evaluation
	4.1 Memory Allocation Overhead
	4.2 Communication Latency
	4.3 Discussion

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

