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Abstract—Fortran Coarrays are a well known data structure
in High Performance Computing (HPC) applications. There have
been various attempts to port the concept to other programming
languages that have a wider user base outside of scientific
computing. While a popular implementation of the partitioned
global address space (PGAS) model is Unified Parallel C (UPC),
there is currently no portable implementation of Coarrays for
C++. In this paper a portable version is presented, which is
closely based on the Coarray C++ implementation of the Cray
Compiling Environment. In this work we focus on a common
subset of all proposed features by Cray. Our implementation
utilizes the distributed data structures provided by the DASH
library, demonstrating their universal applicability. Finally, a
performance evaluation shows that our proposed Coarray ab-
straction adds negligible overhead and even outperforms native
Coarray Fortran.

I. INTRODUCTION

The main objective of Coarrays is to allow Fortran pro-

grammers to operate on globally shared data without the

burden to explicitly invoke communication primitives such as

Message Passing Interface (MPI) routines. Fortran Coarrays

are based on the Partitioned Global Address Space (PGAS)

model which utilizes a one-sided put / get interface to emulate

shared memory semantics on distributed memory systems.

Like traditional message passing, PGAS follows a single

program multiple data (SPMD) approach. Each process has

a local memory address space and contributes some portion

of it to the globally accessible memory. Since communication

and synchronization are semantically decoupled, processes can

access globally shared data independently from each other. In

Coarray Fortran (CAF), processes are called images. While

each image owns its own data objects, the array syntax is

extended with square brackets denoting the image index. Using

this mechanism, data on remote images can be accessed with

conventional array semantics.

In this paper, we describe the design and implementation of

a distributed data structure called dash::Coarray which can

be accessed using a CAF-like syntax. The approach is based on

a proposal by Cray to implement Coarray semantics in the C++

language [1]. In our implementation, the main functionality of

the interface is implemented using existing DASH containers

and closely follows the DASH global memory space concepts

[2] [3]. In contrast to Fortran, C-like languages utilize square

brackets for array accesses. Hence we introduce round brackets

for accessing remote images.

A brief overview of the interface is provided in Listing 1.

For specifying the extents of the Coarray, we follow closely

the C++ array syntax. Coarrays can be scalar (one element

per image) or n-dimensional, where all dimensions except one

have to be specified at compile time.

dash::Coarray<int> i; // scalar Coarray
dash::Coarray<int[10][20]> x; // 2D-Coarray
dash::Coarray<int[][20]> y(n); // one open dim,

// set at runtime in ctor

// access syntax
i(unit) = value; // global access
i = value; // local access

x(unit)[idx1][idx2] = value; // global access
x[idx1][idx2] = value; // local access

Listing 1. Interface of the Coarray for scalar and array types showing local
and global accesses.

The remainder of this paper is organized as follows.

Section II summarizes essential concepts about DASH and

Coarray Fortran to set the stage for this paper. Section III

and IV elaborate the C++ Coarray in more detail and explain

how we provide fundamental Coarray semantics in our PGAS

abstraction. Section V conducts an experimental evaluation

and reveals that the approach proposed in this work can even

outperform native Coarray Fortran. In section VI we compare

our implementation with similar research done in this field.

Finally, section VII concludes.

II. BACKGROUND

Before describing the C++ Coarray we briefly discuss our

C++ library DASH, which serves as the underlying PGAS

abstraction to provide basic mechanisms to communicate

distributed data.

A. DASH

DASH aims at providing distributed data structures and

parallel algorithms operating on them. The DASH library

follows the design principles of the C++ STL (standard

template library) to offer users a familiar interface and to

ensure compatibility with existing algorithms, thus helping in

the parallelization of existing C++ codes.

At the heart of the DASH template library is a set of dis-

tributed data structures, including one- and multidimensional

arrays as well as lists and unordered maps. The distribution of

data among the participating processes (called units in DASH)

can be controlled by user-defined data distribution patterns [3].

Values in the distributed data structures are accessed through

iterators and overloaded C++ operators, hiding the underly-

ing put and get operations in traditional value assignment

semantics. To facilitate efficient local data access and thus
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to avoid overhead, all DASH containers provide access to a

unit’s local elements through local iterators or raw pointers.

DASH generalizes the C++ concepts of pointer, reference, and

iterator to support a virtual global address space that spans the

memory of multiple compute nodes in the form of a GlobPtr

<>, GlobRef<>, and GlobIter<>, respectively.

All communication operations in DASH are executed

through the DART runtime library, which aims at providing

a thin abstraction of the underlying communication backend.

While we have focused on using MPI-3 remote memory

access (RMA) [4], implementations based on other PGAS

communication substrates are also possible. An overview of

the interaction between DASH, DART, and MPI is depicted

in Figure 1.

B. CAF

Coarray Fortran (CAF) [5] can be seen as a continuation of

the High Performance Fortran (HPF) effort of the 1990s, in

which the goal was to make distributed memory systems more

easily usable by employing a more productive programming

model than explicit message passing. Where MPI requires

explicit data partitioning and careful orchestration of send and

receive operations, HPF features a single thread of control

and data parallelism that is expressed in the form of com-

piler directives. HPF was ultimately not widely accepted, in

part because of immature compiler technology and missing

features[6]. In contrast, CAF is an explicitly parallel SPMD

programming model, where data distribution and parallelism

is exposed to the programmer and remote data access is made

explicit using the Coarray notation using round brackets. CAF

features have found their way into the Fortran standard since

Fortran 2008. Additional features have been proposed for CAF

such as teams and events [7]. Support for these and other new

features in the next version of the Fortran standard is currently

discussed.

III. THE DASH COARRAY

The dash::Coarray is internally implemented on top

of the dash::NArray class template with a suitable data

distribution pattern to store the data. dash::NArray provides

a distributed N-dimensional fixed-size array, where the assign-

ment of data elements to nodes (partitioning) is specified using

a pattern. This approach is beneficial, as it enables to use the

memory coherence model of the DASH Runtime (DART) [4].

Hence, we can address some of the CAF 2008 shortcomings,

as pointed out by a group at Rice University without major

effort [7]. This includes the following aspects:

• Added support for image subsets, called teams.

• Introduction of global pointers.

• Provision for synchronous and asynchronous access.

• Support for a flush operation, to wait until completion of

asynchronous operations across a team.

We provide support for arbitrary element types as long

as they are trivially copyable. This limitation is necessary

as remote elements internally have to be copied into local

memory before each access.
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Fig. 1. Layered architecture of the DASH Coarray.

In the following sections we define an N-dimensional Coar-

ray as a global array with N local array dimensions plus one

codimension. A scalar Coarray is hence 0-dimensional and can

be used in expressions like a variable as shown in Listing 1.

A. Allocation

In contrast to native C arrays, the distributed aspect adds

more degrees of freedom to the allocation: In its simplest form,

a Coarray is declared after DASH has been initialized. Then,

the allocation follows the Resource Acquisition Is Initialisation

(RAII) principle, and the distributed memory is allocated in

the constructor. To ensure that all units have finished allocation

before the first access happens, the exit of the constructor is

synchronized using a barrier. The extents of the Coarray are

specified similar to native C arrays, as shown in Listing 1.

As DASH follows the concept of teams for building groups

of units, a distributed container is always constructed with

a team. Accesses to the container are only allowed for the

members of this team. Synchronization and collective opera-

tions are restricted in the same way. If no team is explicitly

passed to the constructor, dash::Team::All() is used which

contains all available units.

With the support for teams, delayed allocation is necessary

as the teams are constructed at runtime. This means that the

construction (RAII) and the allocation can be split. This also

enables the user to declare the Coarray at a time where DASH

has not been initialized. An example of this is using a Coarray

as a member in a class, as shown in listing 2.

If the Coarray is declared before DASH has been initialized,

a call to x.allocate() is required to actually allocate the

data.

class Foo {
dash::Coarray<int[10][20]> bar;
Foo(const dash::Team & my_team = dash::Team::All()){

// only images in my_team allocate coarray
bar.allocate(my_team);

}
};
dash::init(); // init DASH runtime
Foo f;

Listing 2. Example demonstrating how to use delayed allocation when placing
the Coarray as a member in a struct.
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Destruction of a Coarray is also a collective operation. This

is necessary to ensure that there will be no remote accesses

to an already destroyed object. Otherwise one instance of the

object might already have left the scope while another unit

accesses its data. This approach adds proper RAII semantics

for distributed containers. For convenience it is also possible

to explicitly deallocate a Coarray using deallocate().

B. Data Access

The interface implements the container concept of DASH

and is similar to the interface of dash::NArray. The public

interface is similar to the interface proposed in Cray Coarray

C++ [1]. The main idea is to separate the co-index from the

array index by using different bracket syntax:

• (unit) for selecting the unit

• [index] for selecting an index within a units range.

If no unit is selected using the round bracket operator, the

accesses to the Coarray are performed on the local part of the

array.

As the requested element might be non-local, accesses are

performed using global references (GlobRef<T>). These act

as proxy references, providing an assignment operator and a

conversion operator for the element type. Hence, elements at

arbitrary locations can be accessed transparently. To use dash

::Coarray elements in expressions, we provide GlobRef<T>

specializations for native types. Thus, use cases as shown in

Listing 3 are possible.

dash::Coarray<int> x;
x += 1; // (1) Coarray::operator+=(int)
x = x(1) + 1; // (2) assign, Coarray::operator+(int)
x = 1 + x(1); // (3) assign, operator+(int, Coarray)

Listing 3. Coarray elements and scalar Coarrays can be used in expressions.

To support use cases as show in Listing 3 item (3), we

provide specializations of the global arithmetic operators.

This is required as the associativity of arithmetic operators

in C++ is left to right.1 While get operations are blocking,

all put operations are issued asynchronously. To wait for all

outstanding operations, x.flush() can be used.

1) Linear Access: The data stored in the Coarray can

be accessed using iterators on both local and global ranges.

While for global ranges the begin() and end() methods

return a GlobIter<T...>, for local ranges a native pointer

is returned. Fully transparent access is possible on both local

and global ranges using global iterators / global references.

Nevertheless a differentiation between local and global ad-

dresses is useful to avoid the overhead in the PGAS stack when

accessing local data only. While both types of iterators can be

passed to STL algorithms, global iterators can also be passed

to the corresponding collective DASH algorithm variants. Both

local and global iterators meet the RandomAccessIterator

requirements.

1For details on the C++ operator precedence, see
http://en.cppreference.com/w/cpp/language/operator_precedence

dash::Coarray<int[10][20]> x;

// global iterators to full range
GlobIter<int> gbegin = x.begin();
GlobIter<int> gend = x.end();

// global iterator to range on single unit
// (might not be local)
GlobIter<int> gbegin = x(0).begin();
GlobIter<int> gbegin = x(0).end();

// local iterator to local range.
int * lbegin = x.lbegin();
int * lend = x.lend();

Listing 4. The Coarray elements can be iterated on both local and global
ranges.

2) Local Types: Multidimensional array access is provided

by returning a dash::NArray view on the first bracket oper-

ator. Hence, each further bracket access on a view object re-

duces the number of free dimensions by one, until a GlobRef<

T> is returned for the last dimension. For performance reasons,

there is a specialization for local accesses on 1-dimensional

Coarrays: Instead of returning a local view, a native pointer

to the requested element is returned. To avoid the overhead

of chained view proxies (coarr[x][y]...), a coarr.at

(x,y,...) method is provided for direct element access.

The interface for local accesses using the bracket operator is

provided in Listing 5.

Coarray<T>::operator[]: deleted
Coarray<T[]>::operator[]:

(const index_type & i) -> & T
Coarray<T[a]...>::operator[]:

(const index_type & i) -> local_view_type

Listing 5. The return type of the bracket operator depends on the rank of the
Coarray.

3) Copointers: A global pointer / copointer is expected to

behave similar to a native pointer, but can point to an arbitrary

location in the global address space. Dereferencing a global

pointer should return a reference to the value at its location.

This has to be a global reference, as the location of the value

might be remote. Likewise, getting the address of an element

could be done using the ampersand (&) operator. However in a

PGAS scenario the return value of this operation is not well-

defined: It could be the memory address of the local copy,

or a global pointer. While the local address can be passed

to STL algorithms (pointers are random access iterators)

this only works for local data. DASH distinguishes between

global references GlobRef<T>, global pointers GlobPtr<T

> and global iterators GlobIter<T>. Here, global pointers

behave similar to native pointers, but can point to any location

in the global memory space. This also implies that they

do not have any knowledge about the container layout. As

this differentiation between different types of addresses often

confuses programmers [1], we do not overwrite the ampersand

operator.

Instead, we provide global iterators which can be used in

both DASH and STL algorithms. For convenient access we

provide views to access parts of the Coarray. There, each N-

D slice (except the last, 0-D) of the Coarray is itself a view,

providing begin() and end() iterators. An example of this
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interface is given in Listing 6:

#include <algorithm>
Coarray<int[100]> x;

auto a = x(2)[0]; // last dim => GlobRef<int>
auto b = x(2); // NArrayView<...>

auto begin = x(2).begin(); //GlobIter<...>
auto end = x(2).end();
std::fill(begin, end, 42);

Listing 6. Using the DASH Coarray in STL algorithms by getting iterators
from the Coarray container.

For technical details, we refer to the dash::NArray con-

cept. 2

4) Atomic Accesses: The dash::Coarray is overloaded

for atomic types such that atomic operations are used when

accessing and modifying elements. Conveniently we get the

atomic support for free, as all elements are accessed using

global references. These are specialized for the atomic wrapper

type dash::Atomic<T>. Here, we mimic the interface of std

::atomic as close as possible. However due to the distributed

memory we cannot use it directly as internally remote data is

copied to a local buffer before accessing it. The accesses to

these elements are performed using the corresponding atomics

interface of the communication backend.

An array of atomics is specified by wrapping the element

type with dash::Atomic<T> as shown in Listing 7.

dash::Coarray<dash::Atomic<int>[10]> atomic_arr;
// atomic_arr(i) -> GlobRef<dash::Atomic<int>>
int a = atomic_arr(0)[0].compare_exchange(0, 2);

Listing 7. Arrays of atomics can be placed in the Coarray. Then the global
references are specialized for atomic operations.

C. Synchronization

1) Team Support: Teams are groups of units which work

together on a certain task. Collective operations can then be

executed on a team, which is beneficial for large scale systems

as not all units have to participate in this operation. In CAF

2008 there is no concept of teams, but research has shown that

most algorithms can be implemented efficiently using teams.

The alternative CAF 2.0 implementation, proposed in [7] also

introduces teams.

As DASH entirely follows the team concept [4], all syn-

chronization of this Coarray implementation is also based

on teams. In the trivial case, this is dash::Team::All(),

which contains all units. However for compatibility with CAF

legacy code we provide a sync_images(list_of_images)

function. Using this mechanism, a synchronization of a group

of units selected by their unit id is possible.

D. Mutual Exclusion

For synchronizing global accesses on a Coarray, a dis-

tributed mutex, called dash::Comutex is introduced. In con-

trast to the interface proposed by Cray, we do not specialize

the Coarray for special types like Mutex. Doing so, would

change the semantics of the Coarray, which leads to problems

2Code documentation online at https://codedocs.xyz/dash-project/dash/

similar to std::vector<bool>. Furthermore a multidimen-

sional Coarray<Mutex[2]> would be problematic. Our dash

::Comutex provides a similar interface to the Coarray and is

also compatible with std::lock_guard, so scoped locks are

possible. Support for local accesses is not provided, as there

is no valid use case. A common usage is shown in Listing 8.

Comutex comx;
comx(2).lock();
comx(2).unlock();
// ...
{

// mutual exclusion on unit 1
std::lock_guard<dash::Mutex> lg(comx(1));

}

Listing 8. The Comutex provides one dash::Mutex per unit which can
be used like a std::mutex.

E. Coevents

Events have been proposed for introduction in the CAF stan-

dard. Our implementation provides a simplistic but powerful

API based on the Coarray syntax:

Coevent coevt;
// assume running with at least 3 units
if(this_image() < 3){

coevt(2).post();
}
if(this_image() == 2){

// wait for 3 incoming dependencies
coevt.wait(3);

}

Listing 9. This example shows a simplistic producer-consumer pattern using
events.

Events can be posted from any image to any image, but

waiting for events is only supported locally. This limitation

enables almost perfect scalability as no scheduler or worker

thread is necessary. Furthermore this solution can be imple-

mented using pure one-sided communication. In our case this

is achieved by an event counter per unit which is incremented

atomically when posting events. The wait() call is then busy

waiting until the desired number of incoming events has been

posted. Then the counter is reset and the call returns. Internally

this is done using compare_and_swap() on the counter.

Limitations: There is currently no possibility to dispatch on

the source of an event. In addition the user is responsible for

not over-posting a target: As there is no concept of epochs, it is

not allowed to post more events to a target than the target waits

for. Before new events are allowed to be posted to a target, it

has to be ensured that the wait on the target has been passed.

However to avoid cases like that, multiple dash::Coevent

instances can be used.

It is also possible to test how many events have already

arrived, using test(). This can be used together with mul-

tiple dash::Coevent instances to build task graphs. This is

possible for both local and remote events. However, spinning

on remote events using test() is not recommended as this

might lead to progress problems.

F. Cofutures

Cofutures are expected to behave similar to std::future

but internally use non-blocking communication. This feature
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Fig. 2. Example where the local range of unit 0 is broadcasted to all other
units.

Fig. 3. Visualized version of a coreduce with dash::Plus<T> as reduce
operation. The results are then collected at unit 0.

is essential to achieve good performance. For single elements

this is implemented using asynchronous global references. For

ranges, dash::copy_async can be used, which returns a

dash::future for waiting for completion. This follows the

STL concepts and internally copies the elements in chunks

instead of one at a time. Support for range-references, which

encapsulate a number of elements has be considered, but in

our opinion this has no benefit over using explicit copy.

Coarray<int> x;
// blocking get, non-blocking put
int z = x + 1;

Coarray<int[10]> coarr;
std::vector<int> local_data(10);
// asynchronous copy returns a future object
auto fut = dash::copy_async(coarr(2).begin(), coarr(2).end

(), local_data.data());
// do some heavy computation
fut.wait();

Listing 10. Example showing the two types of future objects: Asynchronous
element accesses and copy operations.

IV. COLLECTIVE OPERATIONS

A. Collectives

The collective operations are modeled after their Fortran

equivalents and are implemented using the corresponding

collective operations of DART. This includes:

cobroadcast: Broadcasts the local part to all other images.

While in CAF 2008 only scalar Coarrays can be broadcast,

this specification provides support for broadcasting the whole

local range. If no master unit is set, the values of unit 0 are

broadcast.

coreduce: Performs a broadside reduction of the local parts

of all units using a DASH reduce operation. The interface

allows the user to specify which unit receives the result of the

operation. If no unit is passed, the result is broadcast to all

units.

B. Fortran Style Syntactic Sugar

To provide Fortran programmers a familiar interface, we

define aliases for common Fortran functions. This also makes

the porting of applications simpler.

dash::Coarray::this_image() == dash::myid(); // (global)
dash::Coarray::num_images() == dash::size(); // (global)
dash::Coarray.sync_all() == container.barrier();

Listing 11. Coarray functions and their native DASH equivalents.

C. Type parameter syntax

As the interface is based on the Cray proposal, we follow the

type parameter syntax as well. Hence, array types are declared

similar to their C / C++ equivalents by using T[n][...]. The

conversion to the dash::NArray syntax is done at compile

time using meta programming.

D. Local Memory Space

The local memory space is static and continuous which

makes integration with other libraries much easier. This could

be easily lessened by using dynamic allocators, as the iteration

functionality is based on GlobIter<T>.

V. EVALUATION

The following section presents our techniques for minimiz-

ing the overhead of the layered DASH architecture. Moreover,

we evaluate the Coarray implementation using one mini-app

from the Mantevo benchmark suite as well as a dedicated

FORTRAN latency benchmark.

We conducted our measurement on three different systems:

the Cray XC 40 system ‘Cori’ installed at LBNL as well as

the IBM iDataPlex system ‘SuperMUC’ (phase 2) installed at

the Leibniz Supercomputing Centre (LRZ). The system speci-

fications are summarized in Table I. All codes were compiled

using the Intel compiler (icc / ifort). As communication layer

for the dash::Coarray benchmarks we use DART with MPI

backend.

A. Implementation

Getting the highest performance in PGAS implementations

is a challenging task. Following the library-based approch has

the disadvantage that the compiler cannot optimize the remote

accesses. However studies on UPC and UPC++ have shown

that the impact of the compiler optimization is often limited

to trivial cases like loops [7, p.12] [8, p.6]. These can easily

be mapped to C++ functions which reduces this limitation.

A common problem of layered architectures is the perfor-

mance loss between each layer due to additional function calls

and data passing. As this also holds for our implementation, we

carefully checked that the overhead in each layer is minimal.

This is achieved by using constexpr and inlining wherever

possible. We did some inspections of the compiler optimiza-

tion reports of the Intel compiler (icc): Most performance

critical parts of the Coarray layer are completely optimized

away. Hence, there is only minimal overhead in the DASH /

C++ part of the implementation.
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TABLE I
TEST SYSTEM OVERVIEW.

System CPU Memory / Node Network Compiler MPI

Cori (HSW) 2 x E5-2680v3 12C 128 GB Cray Aries ICC 18.0.0 CCE 8.5.3
Cori (KNL) 1 x Xeon Phi 7250 96 GB + 16 GB (HBM) Cray Aries ICC 18.0.0 CCE 8.5.3
SuperMUC 2 x E5-2697v3 64 GB IB FDR14 ICC 18.0.0 IBM POE 1.4 & Intel 5.1
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1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
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(b) Communication overhead

Fig. 4. HPCCG Performance using Cray MPI on KNL

TABLE II
HPCCG IMPLEMENTATION COMPARISON

Setup Matrix Storage Communication Layer

reference native memory two-sided mpi
mpirma mpi-window one-sided mpi
DASH Coarray dash::Coarray DART

Another aspect which has to be considered is the over-

all overhead of the DASH + DART + MPI stack. MPI

primary was optimized for large data transfers but not for

PGAS scenarios. Hence, we provide dedicated copy algorithms

and support for non-blocking puts and gets. This makes

overlapping of communication and computation possible and

reduces the impact of the latency added by MPI. One of

these optimizations is bypassing MPI for purely local data

transfers. However best performance can only be achieved

by optimizing the communication pattern of the application.

[9, p.3]. Combining the techniques described above, a very

high application performance can be achieved, as shown in a

prior evaluation of DASH in the context of block-based linear

algebra algorithms [10].

B. HPCCG

The HPCCG mini-app is a simple conjugate gradient bench-

mark code for a 3D chimney domain [11]. As the application

has no communication-computation overlap, communication

latency is exposed more prominently. Based on the reference

implementation we ported the application to two different

setups: a version using only MPI-RMA as well as a version

using the dash::Coarray. A comparison is given in Table II.

For all setups we performed a weak-scaling analysis for

two different problem sizes. These are chosen according to

the recommendations of Mantevo. The small problem uses a

matrix of 96 × 96 × 96 which requires ≈ 608 MB per unit.

For the large problem size we decided to use 60% of the main

memory of SuperMUC which results in a matrix of extents

128 × 128 × 256. For both Haswell partitions we disabled

OpenMP and ran the tests with one thread per MPI rank.

The results show that all implementations based on MPI-RMA

show no clear advantage over the reference implementation as

shown in Figure 6 (SuperMUC) and Figure 5 (Cori HSW).

This is almost certainly due to the synchronous nature of the

data exchange. While the performance of all implementations

is similar, the amount of time spent in communication varies.

Here, the dash::Coarray implementation performs even bet-

ter than the pure MPI-RMA version. This is due to optimized

data-transfer strategies for block/range transfers implemented

in DASH [10]. As HPCCG has no short circuit implemented

for running with only one unit, there is still parallel overhead

in this case.

The benchmark setup on the Knights Landing (KNL) par-

tition of Cori is slightly different: While each KNL node

exposes 68 physical cores with 4 virtual cores each, we

decided to mix OpenMP and MPI to use a more light-weight

parallelism. In our tests we got the best results by using 32

MPI processes with four OpenMP threads each. To keep the

weak-scaling analysis fair, we also use only four OpenMP

threads when running with less than 32 MPI processes. To

avoid necessary code-changes, the KNL nodes are run in quad-

cache mode. This also explains why the smaller problem size

performs considerably better, as almost all data fits into the

16 GB HBW memory. Due to the higher memory bandwidth

on KNL, the local work-packages are processed faster and

hence the share of communication time increases to roughly

6% (Figure 4).

C. CAF-Bench

CAF-Bench is a benchmarking set developed for measuring

the performance of various parallel operations involving For-
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Fig. 5. HPCCG Performance using Cray MPI on HSW
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Fig. 6. HPCCG Performance using IBM MPI on SuperMUC
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Fig. 7. CAF-Bench throughput for sending and receiving various message sizes using Intel-MPI on SuperMUC.

tran Coarrays. While it contains a bunch of tests for almost

all possible Fortran data transfer patterns, we ported only the

parts focusing on features which are also provided by the

dash::Coarray implementation. This includes point-to-point

(ping-pong) data transfer and various kinds of synchronisation

mechanisms. For the evaluation we consider both local (intra-

node) and remote (inter-node) communication: For the intra-

node case we use two MPI processes (DASH) respectively

two images (CAF) placed at different sockets. The remote

case uses two nodes located at the same island of SuperMUC.

Hence, the network-distance between them is one. Instead of

a synthetic ping-pong test, we focus on a setup where multiple

asynchronous accesses happen between each synchronisation

phase.

The results confirm that asynchronous puts and gets have

to be used to get a reasonable throughput. Both MPI_Send

and dash::Coarray::put are not efficient for small data

transfers, as they are blocking (synchronized) after each

request. Surprisingly, for small message sizes up to 4000

doubles our Coarray implementation performs significantly

better compared to the CAF version (Figure 7). Since this is

a common message size for PGAS applications it is crucial.

For larger transfers both CAF version perform better, however

we had problems sending more than 16 million elements as

the transfer did not complete at all.

VI. RELATED WORK

CAF is a realization of the PGAS programming model

of which many incarnations for other languages have been

developed. Global Arrays (GA) [12] was one of the first PGAS

models for C that allows the declaration of one-and multi-

dimensional arrays distributed over the memory of multiple

nodes. GA uses ARMCI [13] for inter-node communication,

while recent efforts on porting the model to GPUs [14] and

7



Intel Xeon Phi Coprocessors [15] have also been reported.

UPC [16] is another well known realization of the PGAS

model based on an extension of the C language and custom

(pre-) compilers. Many new high-productivity languages also

are PGAS approaches, such as Chapel [17] and X10 [18].

More recently, PGAS programming systems have been de-

veloped based on C++. For example, UPC++ [19] is similar

in spirit to UPC but requires no custom (pre-)compiler and

instead uses C++ mechanisms (e.g., operator overloading).

DASH [2] has the same goals but offers a richer set of

data structures and data distribution patterns than UPC++,

including a true multidimensional distributed array [10] and

provides interoperability with the C++ standard template li-

brary (STL). Of the efforts to bring Coarray semantics to

C/C++, the Coarray implementation provided by Cray is the

most complete in terms of covering the features of CAF 1.0 [1]

This implementation is only available as part of the Cray

Compute Environment (CCE) and relies on the proprietary

Cray networking libraries. The dash::Coarray is in contrast

a fully portable solution only relying on the availability of

MPI and C++11. Xcalable MP (XMP) is another approach

for realizing PGAS semantics using compiler directives for

C/C++ and Fortran programs which also has provisions for

Coarray semantics [20].

VII. CONCLUSION

In this paper we have shown an implementation of the

CAF 2008 programming model in pure C and C++ without

the need for special compilers. Many shortcomings of Fortran

could be fixed by using the possibilities of the C++ language.

Furthermore we used a more modern communication model

based on teams which enables using this implementation in

very large HPC systems. Combined with the other synchro-

nization structures like events and mutexes, highly performant

application code can be written. By implementing the Coarray

on top of DASH, the user is able to use DASH’s distributed

algorithms on the Coarray as well. Various optimizations have

been shown to achieve high performance in applications using

the Coarray. A quantitative performance evaluation of a mini-

application and a dedicated CAF benchmark showed that our

C++ Coarray implementation does not lose performance due

to its layered architecture.

The next steps for our work are implementing a DART

version based on GASNET. This is expected to further enhance

the communication performance as this is optimized for low-

latency accesses.
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