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Abstract—Emerging technologies such as non-volatile or 3D-
stacked memory significantly impact the design of future high
performance computing systems. To keep up with the increasing
core count, relying only on DRAM is inefficient due to its
static power consumption. Modern HPC architectures feature
a heterogeneous memory hierarchy with different capacities
and capabilities. This paper addresses two challenges. First, we
need programming models to abstract the complexity of the
underlying heterogeneous memory hierarchy, while still giving
explicit control to domain experts. We propose the concept of
memory spaces to model a heterogeneous memory hierarchy and
integrate it into a PGAS-like programming model. Second, we
need to understand the impact of different memory capabilities
on the performance of scientific applications. An experimental
evaluation with a series of benchmarks, conducted on a Intel
KNL platform, reveals that proper data placement on specific
types of memory achieves significant speedup.

Index Terms—Memory, Heterogeneity, Locality, MPI, PGAS

I. INTRODUCTION

Machine-level hardware design in High Performance Com-

puting is progressing towards heterogeneous computation and

memory resources in increasingly complex topologies. In

effect, maintaining portable efficiency across today’s largest

HPC systems is an overwhelming challenge for application

developers. While heterogeneity of compute devices is al-

ready common, we can currently observe significant changes

in modern memory architectures. The increasing core count

requires higher memory bandwidth which cannot be delivered

only through conventional DRAM. DRAM suffers from both

its low density and static power consumption which makes

it inefficient for these workloads. Novel 3D stacked memory

technologies provide better density and bandwidth [1] but

come at disproportionate high cost considering the large capac-

ities which are required to sustain data-intensive workloads.

Systems with heterogeneous memory technologies, working

side-by-side of each other, will be the design approach in

the near future. This trend is already observable by recently

released architectures. As an example, consider the Intel

Xeon Phi Knights Landing (KNL) platform which features

multi-channel DRAM (MCDRAM) as on-chip high bandwidth

memory (HBM) along with a substantially larger DRAM [2].
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Another interesting design decision is the next generation

HPC system at the Oak Ridge Leadership Computing Facility

(Summit) where each node is equipped with 1.3 TBytes of het-

erogeneous memory, including DRAM, HBM and non-volatile

memory (NVRAM) [3]. The question of how to effectively

utilize these co-located memory technologies to improve data

placement is subject of active research [4]. Approaches exist

to utilize these additional memory as a fast last-level cache

which is transparently managed by the hardware or operating

system [5]–[7]. These designs do not require any modification

in applications to take advantage of the additional memory.

On the other hand, it increases hardware and operating system

complexity to manage cache line or page replacement.

We believe that domain scientists or programmers need to

have full control over the data distribution to explore algorith-

mic locality and prefer a flat memory space where available

memory is exposed in its full potential. The operating system

or third party vendor libraries have to provide a malloc like

interface to explicitly allocate from heterogeneous memories.

However, such a design is neither portable across different

platforms nor flexible enough to support hierarchical and

distributed data placements.

In this paper, we address these challenges and present a

locality-aware and portable interface of heterogeneous mem-

ory spaces in the Partitioned Global Address Space (PGAS)

model. We have established the following main goals:

1) Flexibility: The memory interface has to be flexible

enough to support current and future memory technolo-

gies. The information about a specific memory space

and its characteristics is encoded in compile-time type

information.

2) Portability: Existing tools are either architecture-specific

to a particular platform (e.g., libmemkind [8]) or not

aware of unconventional memory technologies (e.g.,

malloc). The memory space abstraction has to support

any memory type regardless of the underlying HPC

platform.

3) Capability abstraction: Instead of programming against

a particular memory API we need a capability model

to express both qualitative and quantitative requirements

which can then be specified as user-provided constraints

to support proper data placement.
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The remainder of this paper is organized as follows. After

presenting relevant background in Section II, Section III elab-

orates the approach to integrate memory spaces into DASH as

a PGAS-like C++ template library. Section IV conducts a case

study on an Intel KNL cluster, based on benchmarks in the

Cowichan problems [9]. It shows that selecting between fast
and slow memory is not simply a matter of choice but depends

on application-specific characteristics which may alternate at

runtime. Finally, Section V summarizes related work and

Section VI concludes.

II. BACKGROUND ABOUT PGAS AND DASH

In the Partitioned Global Address Space (PGAS) model

globally available memory is spanned over all processors by

exploiting a one-sided put/get interface. It contrast to the

well-known Message Passing Interface (MPI) it semantically

decouples communication and synchronization [10], enabling

a more data-centric programming model with flexible data

placement strategies.

The work presented in this paper is performed in the context

of DASH, a PGAS abstraction based on C++ templates which

aims at providing distributed data structures and algorithms

operating on them in parallel. The set of DASH data struc-

tures includes both static n-dimensional arrays and dynamic

containers such as lists and maps. We apply the well-known

concepts of C++11 to provide data manipulation and iterator

primitives. Thus, DASH containers seamlessly work with the

sequential C++ standard template library (STL) algorithms. In

order to exploit the full performance potential the DASH

container concept specifies an explicit model of locality, i.e.,

all accesses are either local or remote. Domain experts can

specify flexible data placement strategies, like blocking or

tiling, to match application-specific locality requirements [11].

Communication of shared data is transparently handled by

the DASH Runtime (DART) which supports, amongst oth-

ers, MPI-3 remote memory access (RMA) as the underlying

communication substrate.

DASH follows the single program multiple data (SPMD)

execution model. A processing entity is called a unit and

a team groups an ordered set of units. Teams encapsulate

computation and memory resources which are “owned” by

the included units. A heterogeneous machine is represented as

a set of hierarchically organized teams in a topological graph

model. Primitives to query, traverse or filter this graph enables

to obtain information about available memory and computation

capacities. [12].

III. HETEROGENEOUS MEMORY HIERARCHIES IN PGAS

Figure 1 illustrates a high-level overview of a hierarchical

memory space model. On the very top are DASH containers to

organize the globally shared data. In the vertical direction are

several layers of memory spaces, while the horizontal direction

visualizes single nodes which contribute to the global memory.

The following sections elaborate this design in more detail.

Fig. 1: Architectural overview of heterogeneous memory

spaces.

A. Memory Space Abstraction

The purpose of a memory space is to abstract both qualita-

tive and quantitative characteristics of the underlying memory

resources, as well as mechanisms to allocate and deallocate

chunks of memory. The interface for allocation and deallo-

cation simply encapsulates the complexity in vendor-specific

libraries such as Intel’s memkind [8] and PMEM libraries [13]

or Nvidia’s CUDA Toolkit.

Qualitative characteristics include the memory type, such

as DRAM, HBM or NVRAM. All of them have different

performance characteristics. Another significant distinction

refers to capabilities like persistency or volatility. Persistent

memory spaces have stricter requirements regarding mem-

ory consistency, compared to volatile memory spaces [14].

Therefore, memory spaces which operate on NVRAM have to

support operations to satisfy the underlying persistency model.

We added an explicit flush operation to the memory space

concept. For volatile memory spaces, this can be considered as

a NOP which can be easily optimized away by compilers. Since

this information is encoded in C++ templates, qualitative user-

defined constraints can be formulated as predicates already at

compile-time to guide proper data placement. As an example,

domain scientists can leverage their application knowledge to

allocate bandwidth-sensitive data on HBM or utilize NVRAM

to enable checkpoint restart mechanisms in their applications.

Figure 2 illustrates the programming model with two globally

allocated DASH arrays, one in the default DRAM memory

and other in HBM. Migration from one memory space to the

other corresponds to a copy operation.

Another aspect is the scope which is inherent to the PGAS

model. A memory space can be in the global domain which

generally applies to all DASH containers. The global domain

obviously requires a team (group of processes), defining the

scope of the global memory. The remaining two domains are

local to represent the system’s on-node memory or device,

representing the memory space on accelerator devices. This

makes it very flexible to integrate other domains. An example

may be NUMA, enabling to reason about spatial locality in a

more fine-grained manner.
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// type alias for an array in default memory space
using array_t = dash::Array<int>;
// type alias for an array in HBW memory space
using array_hbw_t = dash::Array<int, dash::hbw_tag>;

int main(int argc , char * argv []) {
dash::init(&argc, &argv)
size_t global_capacity = ...;
array_t arr_dram(global_capacity);
dash::fill(arr_dram.begin(), arr_dram.end(), ...);
// Initial processing in DRAM...

// Migrate data from DRAM to HBM
array_hbw_t arr_hbw(array_dram.size());
dash::copy(arr_dram.begin(), arr_dram.end(),

arr_hbw.begin());
// Further processing in HBM...
dash::finalize();
return 0;

}

Fig. 2: DASH example with heterogeneous memory spaces.

B. Memory Allocation Policies

In DASH, we separate the concepts of memory spaces

and allocation policies. In order to follow application-specific

requirements we provide a set of global and local allocators.

Allocation strategies are chosen according to the DASH con-

tainer semantics. As an example, memory allocation can be

collective. Each unit allocates a local portion and collectively

attaches it to the global memory domain. This is a good

fit for static containers, such as arrays or matrices since

capacity and size of the underlying memory are known prior to

container construction. In contrast, non-collective means that

units within a team can independently attach local to global

memory. This approach is required for dynamic containers

(lists, maps) as the capacity increases or decreases during the

container’s life time.

Global memory allocators rely on local allocators to acquire

and release memory resources. Local allocators specify alloca-

tion strategies to match application-specific requirements. As

an example, frequent allocation and deallocation may lead to

memory fragmentation, both in the local and global memory

space. This in turn may result in non-negligible overhead as

the memory footprints increases. In order to mitigate these

potential challenges we provide a set of strategies, such as the

well-known arena or pool allocators to satisfy more demanding

use cases in DASH lists or maps. Another purpose of local

allocators is to compose various allocation strategies. Consider

a situation where memory allocation is requested from a

particular memory space, however, the requested capacity

cannot be completely or at most partially serviced. Depending

on the user requirements we can throw a runtime error or

provide a fallback policy to allocate from another memory

space.

IV. EXPERIMENTAL EVALUATION

This evaluation studies two questions. First, we show the

feasibility of our proposed memory space concept with current

state of the art architectures. Second, we study the impact of

various memory allocation strategies in scientific applications.

We conduct the experiments on the second phase NERSC

Cori system which consists of 9668 Xeon Phi KNL 7250

nodes, all configured in quadrant mode. Each node features

16GB MCDRAM and 96GB DRAM.

A. The Cowichan Problems

The Cowichan benchmarks represent common problems

in scientific applications [9] to study the impact of various

allocation strategies in heterogeneous memory systems. The

following provides a brief overview of our selected kernels to

conduct the experiments.

randmat: Generate a 2-dimensional array mat of random

integers using a deterministic pseudo-random-number

generator.

thresh: Given a percental threshold p, calculate a 2-

dimensional bitmask mask such that applying mask to

mat selects p percent of the highest values in mat.
winnow: Apply mask to mat and store all masked values

along with their 2D indices in (row, col, val)-tuples. Sort

these tuples in ascending order by val and select n evenly

strided elements, resulting in a vector of (row, col)-
coordinates, called points.

outer: Given a matrix omat with dimensions identical to

mat. For all elements with coordinates (i, j) such that

i ≠ j, compute omat[i][j] as the Euclidean distance of

points[i] and points[j]. .

product: Compute the inner matrix-vector product of omat
and vec.

We have implemented these benchmarks by using DASH

containers and algorithms. The source code is publicly ac-

cessible1. Winnow and outer cause significantly more over-

head compared to the other kernels due to higher memory

footprint and algorithmic complexity. Winnow requires sorting

a global array which is a non-trivial operation, particularly

in distributed memory. Outer is memory-bound because we

iterate with a unit-stride over the distributed array and compute

element by element.

Optimizing memory placement requires considering the

underlying memory access patterns. As an example, mat has a

lifetime over 3 chained kernels (randmat, thresh, winnow) and

is written to only in the first one. Moreover, its elements are

accessed in a unit-stride manner both in thresh and winnow,

resulting in good spatial and temporal locality. We implement

our algorithm to allocate mat first in DRAM and subsequently

migrate it to HBM to utilize the available bandwidth.

The same challenges apply to temporary non-DASH con-

tainers as well. Consider calculating an inner matrix-vector

product. If data is globally distributed, one approach is to

locally allocate temporary buffers and fetch remote data into

it to accelerate local computation. Afterwards the copy is

discarded. Proper reasoning about the life time and usage of

temporal memory may result in a non-negligible impact on

performance.

1https://github.com/dash-project/dash-apps
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B. Measurement Methodology

All benchmarks have been executed in flat mode and cache
mode which serves as the performance baseline. For flat mode,

there exist two variants. In the first variant we allocate no data

in MCDRAM, while the other relies on user-provided hints to

schedule allocation either in DRAM or MCDRAM as specified

in our memory space concept in Section III.

The codes were compiled using the provided Cray compiler

wrapper and Intel ICC 18. The DASH runtime uses Cray MPI

as the communication substrate. While we have 68 cores on

a single KNL node we pin one unit2 always on two cores,

resulting in 34 units per node. We have found that scheduling

more units on a single node causes high overhead and degrades

performance in this setup. The Cowichan benchmarks have

been run with different problem sizes differing in the number

of elements per dimension. A problem size of 40k results in

a 40k × 40k matrix and a vector requires capacity for 40k
elements. The problem sizes scale linearly starting from 20k
to 80k while the number of nodes scale logarithmically from

1 up to 32 nodes. Due to lack of space, we report the median

and standard error for one weak and one strong scaling study,

each with 30 iterations. The memory requirements per node

are plotted on the y-axis.

C. Discussion

Figures 3 and 4 show the results of our experiments. It is

easy to see that winnow and outer dominate the execution

time compared to the other kernels which is either reflected

in the high memory requirements per node. If the memory

requirements per node are relatively small and fits completely

into the 16GB on-chip HBM our model of a flat memory space

results in performance degradation of up to 7% compared to

the cache mode version, even if we allocate all data on HBM.

We attribute this to the additional library overhead since we

have to track all memory allocations internally.

The results change as soon as we are close to the HBM

capacity limit or slightly exceed it. The weak scaling study

in Figure 3 shows that we can significantly outperform the

cache mode if we strategically allocate data on both HBM and

DRAM. In winnow we copy chunks of data back and forth

between HBM and DRAM asynchronously to achieve good

communication-computation overlap. Moreover, we explicitly

allocate temporary STL containers to process local data either

in DRAM or HBM. This is possible since our allocators satisfy

the C++11 allocator concept. Read-only data is allocated in

HBM while write-intensive data for sorting is allocated in

DRAM. Both optimizations contribute to our speedup of 12%.

Figure 3a confirms this strategy since the DRAM only variant

is even faster than the cache mode variant.

Similar observations apply to the strong scaling study in

Figure 4c. We start with a relatively high memory footprint

per node and scale logarithmically the number of nodes. In

the first experiment we can see the same effects as in the

weak scaling case since the memory requirements exceed the

2MPI process in this case

available HBM capacity. Our hybrid HBM / DRAM variant

achieves up to 16% compared to the cache mode variant. if

we increase the number of nodes and reduce the memory

footprint below the available HBM our performance advantage

decreases, compared to cache mode.

V. RELATED WORK

Most scientific applications still use the traditional MPI

programming model. This approach requires programmers to

exploit the algorithmic locality and achieves high performance

in many HPC scenarios. However, providing a more data-

centric global view to work with hierarchically distributed data

is challenging. Traditional PGAS approaches such as UPC [15]

or OpenSHMEM [16] do not support the notion of hierarchical

teams to reflect the locality of heterogeneous machines and

provide only a 2-level (i.e., local or remote) distinction to

reason about the access costs. More modern approaches such

as Chapel [17] and X10 [18] provide the concept of locales or

places to model heterogeneity and support memory spaces in

recent releases. However, these approaches usually require to

rewrite the whole application from scratch, which is difficult

in most cases. Moreover, their integration with other numerical

libraries is quite limited. Fortran and its included support

for the Coarray data structure to support PGAS overcomes

these limitations [19]. However, their model of heterogeneous

memories is not as flexible as the presented work in this paper.

Kokkos [20] is conceptually close to this work. Like DASH,

it is a C++ template library to provide n-dimensional arrays

with a polymorphic compile-time data layout. However, it is

limited to shared memory architectures and does not provide

a global address space model. Phalanx [21] follows a similar

approach and supports a distributed PGAS model. It does not

expose an explicit memory space concept but provides built-

in support for the OpenMP and CUDA backends. The work

in this paper is more flexible in that we support any memory

type, independent of the underlying platform.

VI. CONCLUSION AND FUTURE WORK

This paper presents a flexible design of heterogeneous mem-

ory spaces in a distributed PGAS model. The large number of

related studies, addressing heterogeneous memory resources,

confirms the significance of this topic. A prototypical imple-

mentation has been evaluated and demonstrates the feasibility

of integrating heterogeneous memory spaces with current

state of the art architectures. The proposed design enables to

integrate emerging memory technologies without requiring any

specific hardware support. The conducted case studies reveal

that efficient utilization of heterogeneous memory resources

requires application-specific knowledge of domain experts. In

particular, identifying “hotspot” data structures with a high

memory footprint and alternating memory access patterns are

candidates for proper data placement strategies. In future work,

we study memory allocation for temporary data structures

in the DASH library to better utilize heterogeneous memory

hierarchies. We further plan to abstract heterogeneous memory

hierarchies based on a general capability model. The main
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Fig. 3: Weak scaling, starting from 2 up to 8 nodes
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Fig. 4: Strong scaling, starting from 4 up to 16 nodes

purpose is to provide a toolkit for user-specified hints which

can be considered to deduce the concrete memory type.
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