
Nasty-MPI: Debugging Synchronization Errors
in MPI-3 One-Sided Applications

Roger Kowalewski and Karl Fürlinger

MNM-Team
Ludwig-Maximilians-Universität München

Oettingenstr. 67, Munich, Germany
{kowalewski, fuerling}@mnm-team.org

Abstract. The Message Passing Interface (MPI) specifies a one-sided
interface for Remote Memory Access (RMA), which allows one process
to specify all communication parameters for both the sending and re-
ceiving side by providing support for asynchronous reads and updates of
distributed shared data. While MPI RMA communication can be highly
efficient, proper synchronization of possibly conflicting accesses to shared
data is a challenging task.
This paper presents a novel debugging tool that supports developers
in finding latent synchronization errors. It dynamically intercepts RMA
calls and reschedules them into pessimistic executions which are valid in
terms of the MPI-3 standard. Given an application with a latent synchro-
nization error, we force a manifestation of this error which can easily be
detected with the help of program invariants. An experimental evalua-
tion shows that the tool can uncover synchronization errors which would
otherwise likely go unnoticed for a wide range of scenarios.

Keywords: Bug Detection, MPI, One-Sided Communication

1 Introduction

Modern remote direct memory access (RDMA) network interconnects leverage
efficient MPI one-sided communication, also known as MPI RMA (remote mem-
ory access), as an important communication paradigm. In contrast to traditional
message passing, RMA conceptually decouples data transfer and synchroniza-
tion, enabling superior performance potential [2]. Furthermore, while message
passing is natural for some problems, it can be cumbersome to use for applica-
tions with irregular communication patterns. However, the non-blocking nature
of MPI RMA poses several challenges. Programmers must understand the com-
plex synchronization model to maintain memory consistency between possibly
conflicting asynchronous data accesses. Latent synchronization bugs may lead to
an erroneous state manifested during one execution that may not be triggered
during another execution due to the underlying MPI library, network intercon-
nect facilities, thread interleaving, etc. Often, errors remain unnoticed for a long
period of time and only occur in large-scale scenarios [1] or after porting the
application to a different HPC platform [3].

2

As an example, MPI RMA provides only weak ordering guarantees. In Fig. 1b,
a MPI Put modifies a remote memory buffer x which is subsequently accessed by
a MPI Get call. Due to the non-blocking semantics, both RMA calls may com-
plete in any order. Furthermore, they are non-atomic allowing the MPI Get to
fetch a partially written value by the preceding MPI Put. While this semantic
flexibility is a major strength of MPI and necessary to achieve high performance,
it complicates the task to write portable and correct programs.

For this purpose, we present Nasty-MPI, a runtime debugging tool to support
programmers in finding latent synchronization bugs within their applications.
Like many other tools, it is based on the MPI profiling interface (PMPI) and
can therefore be used with any MPI application. The approach takes the RMA
semantics into account to schedule pessimistic executions of the issued RMA
communications which force a manifestation of latent synchronization bugs. Be-
cause each application may have numerous of such pessimistic executions, we
provide external configuration parameters to control the scheduling process of
Nasty-MPI, enabling easy integration into any environment. Since Nasty-MPI
has no correctness model of the target applications, the only requirement on
programmers is to supply program invariants (e.g., assert statements) which
uncover possibly forced synchronization errors.

Such a tool supports programmers already during early development stages.
We have integrated the concept into the DASH library distribution [6]. DASH is
a C++ template library which adopts hierarchical PGAS1 concepts to important
standard containers (arrays, matrices, etc.) and is published along with extensive
unit test suites to validate the implemented containers and algorithms. Applying
Nasty-MPI improves these unit tests as it significantly increases the chance to
uncover latent synchronization bugs in the low-level MPI RMA communications.

In the reminder of this paper, we first summarize the MPI RMA synchroniza-
tion semantics and present a formalism to model memory consistency in Sect. 2.
Section 3 elaborates the concept and strategies of Nasty-MPI to uncover syn-
chronization bugs. An experimental evaluation in Sect. 4 with small test cases
compares the behavior of applications with latent synchronization bugs on dif-
ferent HPC platforms. It reveals that the presented approach can manifest these
synchronization bugs which would otherwise likely go unnoticed. Finally, Sect. 5
summarizes related work and Sect. 6 concludes the results of this paper.

2 MPI-3 one-sided communication

MPI RMA can be applied only on a point-to-point basis, i.e., an origin pro-
cess remotely accesses memory on a target process. All communication actions
(puts, gets, accumulates) operate in the context of a window, abstracting the dis-
tributed memory between MPI processes, and are grouped into synchronization
phases, called access epochs. No RMA operation may be issued before opening
an access epoch and no completion guarantees, neither local nor remote, are
available before closing an access epoch.

1 partitioned global address space

3

MPI_Win_lock(target);
MPI_Get(&buf,	 …,	target);

if	(buf %	2	==	0)
buf++;

MPI_Win_unlock(target);

(a) Conflicting native
load and MPI Get.

MPI_Win_lock(target);
int s	=	10,	r	=	0;
MPI_Put(&s,	…,	x,	target);
MPI_Get(&r,	 ...,	x,	target);
assert(r	==	10);
MPI_Win_unlock(target);

(b) Unsynchronized
Put-Get sequence.

int buf[100];
/*	init buf */

MPI_Win_lock(target);
MPI_Put(&buf,	 100	…,	target);
MPI_Win_unlock(target);

(c) Non-atomic Put.

Fig. 1: Application samples with synchronization bugs.

MPI_Win_lock(target);
…
if	(buf %	2	==	0)
buf++;

/*	Defer	Get*/
MPI_Get(&buf,	 …,	target);

MPI_Win_unlock(target);

(a) Deferred MPI Get.

MPI_Win_lock(target);
int s	=	10,	r	=	0;

/*	Reverse	order	*/
MPI_Get(&r,	 ...,	x,	target);
MPI_Win_flush(target);
MPI_Put(&s,	…,	x,	target);

assert(r	==	10);	/*	Fails	*/
MPI_Win_unlock(target);

(b) Reordered Put-
Get sequence.

/*	init buf[100]	*/
MPI_Win_lock(target);

/*	Splitting	*/
MPI_Put,(&buf, …,	target);
MPI_Put,(&(buf +	1),	…,	target);
…
MPI_Put,(&(buf +	99),	…,	target);

MPI_Win_unlock(target);

(c) Split non-atomic Put.

Fig. 2: Exemplified Modifications by Nasty-MPI.

MPI RMA offers two synchronization modes which are called the active target
and passive target mode. In the scope of this paper, we focus on passive target
mode as only the origin is involved in synchronization, which closely matches the
requirements of one-sided communication. Passive target synchronization relies
on a single lock/unlock model to open and close an access epoch, respectively.
Nevertheless, we can adopt the proposed techniques to the active target mode,
as well as to other one-sided programming models.

2.1 Challenges in MPI RMA

In MPI RMA, all communication primitives and the lock routine to open an
access epoch are, in fact, non-blocking. Thus, memory operations within an
access epoch, whether RMA or native loads/stores, may conflict with each other.
In particular, we have to consider three critical properties:

Completion: RMA communication operations are not guaranteed to complete
before the surrounding access epoch is explicitly synchronized. For example in
Fig. 1a, the receive buffer (buf) for the MPI Get is subsequently accessed by a
native load. Both memory accesses conflict, resulting in undefined behavior.

Ordering: In general, MPI provides no ordering guarantees for RMA opera-
tions, i.e., the order in which they are applied within an access epoch is un-
specified. An exception is made for accumulates directed to the same target,
and with the same operation and basic data type. In Fig. 1b, two RMA calls

4

read (MPI Put) and write (MPI Get) on a single memory buffer, respectively.
Since the operations may complete in any order, they conflict with each other.

Atomicity: In general, RMA operations are non-atomic, except accumulates,
which guarantee element-wise atomic reads and writes to a single target if they
use the same basic data type. Figure 1c shows an example where an origin
copies an array, consisting of 100 integers, to a target memory. This MPI Put is
non-atomic and may conflict with any memory accesses, operating concurrently
on the target memory location.

These guarantees are crucial in even simple concurrent protocols. Thus, writing
portable and well-defined programs requires properly synchronized memory ac-
cesses on overlapping locations. MPI RMA specifies dedicated synchronization
primitives for this purpose. Beside the common approach of synchronizing by
distinct access epochs, MPI additionally provides local flush and flush primi-
tives to locally or remotely complete pending RMA operations within an access
epoch. While local completion guarantees consistent memory buffers only on the
origin process, remote completion guarantees memory consistency of the target
memory as well [16].

2.2 Modeling Memory Consistency in MPI RMA

To model and analyze the RMA operations issued by an application, we use a
formalism based on a paper written by the MPI RMA Working Group [10].

Two memory accesses a and b conflict if they target overlapping memory and

are not synchronized by both a happens-before (
hb−→) [11] and a consistency edge

(
co−→) [10]. The happens-before order may either be the program order, if both

operations occur in a single process, or the synchronization order between two
MPI processes, such as blocking send-receive pairs. A consistency edge between
two operations (i.e., a

co−→ b) implies that the memory effects of a may be observed
by b. Consistency edges are established by the RMA synchronization primitives,
as described earlier.

Utilizing this notation, we derive an execution model of all issued RMA
communications in an MPI program P . All executions E over the set of RMA
calls in P may be modeled as a partially ordered happens-before graph, formed

by the transitive closure of
hb−→ and

co−→ edges. Two executions e1 and e2 in
E are semantically equivalent if they result in the same happens-before graph.
If a and b are not synchronized, they are contained in a parallel region. For
example, Fig. 3 represents a happens-before graph, derived from the program
in Fig. 1b. Since both RMA operations operate on overlapping memory and are
within a parallel region, the program includes a synchronization bug. If we want
to guarantee that both operations remotely complete in program order, one valid
solution is to synchronize by an additional flush, which establishes the required
cohb−−−→ edge, as depicted in Fig. 4.

The next section explains how we exploit this formalism to uncover latent
synchronization bugs.

5

Lock

Unlock

Get(buf)Put(buf)
Parallel	
Region

Execution	1

Execution	2

Fig. 3: Unsynchronized (two executions).

Lock

Unlock

Put(buf)

Flush

Get(buf)

cohb

Fig. 4: Synchronized execution.

3 Forcing Synchronization Errors with Nasty-MPI

This section describes an effective approach to support programmers in debug-
ging MPI programs with improperly synchronized RMA communications. Sup-
pose an MPI program P contains a latent synchronization bug. Given further
that P has a predefined correctness model in the form of included program
invariants, as illustrated by the assert statements in Fig. 1b. Based on the
presented memory consistency model we are able to explore different execution
paths in the happens-before graph of P with the objective of finding at least one
execution which forces a manifestation of this bug.

3.1 Conceptual Overview

By exploiting the PMPI interface we intercept all RMA communication actions
at runtime and initially buffer them, instead of handing them over to the MPI
library. This enables to dynamically construct a happens-before graph and, in
particular, tracking all its parallel regions. The approach relies on the RMA com-
pletion semantics, allowing to defer the execution of communication actions to
a matching synchronization call. When the application issues a synchronization
action, it triggers a three-stage rescheduling process:

1) Completion Stage: We consider only those communication actions which
are necessarily required to complete, as specified by the synchronization action.

2) Atomicity Stage: We break non-atomic communication actions into a set
of smaller requests in such a way that the memory semantics are identical.

3) Reordering Stage: We reorder communication actions which do not con-
ceptually give any ordering guarantees within the synchronized access epoch.

Figure 2 illustrates the rescheduling techniques when applying Nasty-MPI to the
programs in Fig. 1 in the form of source code modifications that are equivalent
to the effects achieved by the dynamic interception and rescheduling process.

In Fig. 2a, Nasty-MPI exploits the completion semantics and defers commu-
nication actions to a matching synchronization. Thus, the MPI Get will be issued
to the MPI library after the native load.

6

Figure 2b demonstrates the reordering technique. Suppose both RMA calls in
Fig. 1b are required to complete as encountered. Since there is no synchronization
to guarantee program order, we may reverse the order. Note the additional flush,
issued by Nasty-MPI to force the reverse order.

The last example depicts how we utilize the atomicity semantics. In Fig. 2c,
we split one single MPI Put into 100 separate MPI Put calls. While both variants
have identical semantics, splitting RMA operations can effectively force errors
which result from non-atomic memory access on overlapping locations.

In the next section, we explain the rescheduling process in more detail and
discuss how the tool uses the full semantic flexibility, given by the MPI standard,
to schedule pessimistic executions.

3.2 Nasty-MPI Rescheduling Process

Suppose Nasty-MPI receives a synchronization action, triggering the reschedul-
ing process on buffered communication actions. The three stages of this reschedul-
ing process are described in the following.

Completion Stage. Nasty-MPI first distinguishes between local and remote
completion. If the issued synchronization action has remote completion semantics
(i.e., unlock or flush), we filter all buffered RMA calls which are necessarily
required to complete. A synchronization action can complete either all pending
RMA calls within a window or to a specific target rank [16].

In the case of local completion (i.e., flush local), however, all MPI Put calls
remain in the buffer and are not issued to the MPI library. This approach is
allowed, because local completion only guarantees memory consistency of local
buffers. However, because local completion creates a consistency edge between
two consecutive memory access (i.e., a

co−→ b), we have to copy the source buffer
of a to keep it internally until remote completion is forced. This approach is
applicable to RMA accumulates as well. However, because accumulates are con-
ceptually ordered under certain conditions [16], we have to make sure that there
are no subsequent correlated accumulates which atomically fetch data from re-
mote memory. In this case, we are not allowed to further postpone the first
accumulate operation. This strategy is useful because several experiments re-
vealed that some MPI libraries do not distinguish between local and remote
completion, i.e., they always apply remote completion. Table 1 lists two param-
eters for the completion stage to control, whether Nasty-MPI should apply local
completion semantics (NASTY LOCAL COMPLETION ENABLED) or even bypass the
completion stage (NASTY SKIP COMPLETION STAGE).

Atomicity Stage. While fast RMA data transfers (i.e., put, get) are non-
atomic, accumulates guarantee it only on a per element granularity. Thus, we
apply a splitting technique to break a single RMA call into a set of many smaller
RMA calls which have identical memory semantics. We first analyze the count

and datatype parameters which are contained in the signature of each RMA

7

call. If the count parameter is specified with at least 2 elements (i.e., count
>= 2), we further determine the extent of a single datatype element. Based on
these two parameters, one RMA call can be split into many single-element calls.
For example, in Fig. 1c, count is 100 and the extent of MPI INT is 4 bytes.
This results in 100 MPI Put calls, each having a source buffer which starts at
increasing 4 bytes offsets relative to the original buffer address (see Fig. 2c).

RMA put and get calls can be even split into 1-byte RMA operations. How-
ever, we are restricted by the displacement unit in MPI windows which defines
the minimum size of a single element. Thus, this approach applies only if the
displacement unit is specified with a size of MPI BYTE at window creation.

The atomicity stage may skipped by setting the NASTY SKIP ATOMICITY -

STAGE parameter to 1, as listed in Table 1.

Reordering Stage. Passing the first two stages gives a set of RMA calls which
are a) required to remotely complete; and b) split into many small RMA calls
in order to explore the minimal completion and atomicity semantics. Before we
hand over these RMA calls to the native MPI library, they are finally reordered.
The only restriction applies to accumulates. We can interleave them with any
other communication action, however, their syntactic order has to be preserved.
The default reordering approach is to randomly shuffle buffered communication
actions. More fine-grained control is provided by the configuration parameter
NASTY SUBMIT ORDER which can be set to any of the options in Table 2. How-
ever, simply reorder RMA operations does not guarantee that the native MPI
library obeys the scheduled order. Similar to Nasty-MPI, MPI libraries are free to
reorder or even apply additional optimizations, such as merging of RMA calls [7].
Thus, we must explicitly force the scheduled ordering. One option is to simulate
communication latency between consecutive communication actions, giving the
MPI library a chance to asynchronously process an RMA operation before the
next call is issued. However, if the MPI library does not facilitate asynchronous
progress mechanisms or applies lazy execution, this approach has no effect. An
effective solution is to issue additional flush operations which is semantically
valid, as we modify only parallel regions in the original happens-before graph.

The reordering stage can be further controlled by two parameters in order to
configure the simulation of communication latency (NASTY ADD LATENCY) and to
configure whether Nasty-MPI is allowed to inject additional flush synchroniza-
tions (NASTY ADD FLUSH ENABLED).

4 Experimental Evaluation

The experiments were conducted on two HPC platforms: The NERSC Edison
Cray XC 30 supercomputer [17] and SuperMUC [12] at the Leibniz Supercom-
puting Centre. The Cray machine is interconnected by an Aries network and
provides its own MPI library and compiler, included in Cray’s Message Passing
Toolkit. SuperMUC facilitates a fully non-blocking Infiniband network and sup-
ports three MPI libraries: IBM (v9.1.4), Intel(v5.0) and open MPI(v1.8). The

8

Table 1: Nasty-MPI configuration pa-
rameters.

Parameter Options

NASTY SKIP COMPLETION STAGE 0*, 1

NASTY LOCAL COMPLETION ENABLED 0, 1*

NASTY SKIP ATOMICITY STAGE 0, 1*

NASTY SUBMIT ORDER see Tbl. 2

NASTY ADD FLUSH ENABLED 0, 1*

NASTY ADD LATENCY unit32 range**

*default value **default value: 0

Table 2: Options for NASTY SUBMIT -

ORDER.

Option Description

random Random (default).

reverse po Reverse program order.

put before get Schedule put before get calls.

get before put Schedule get before put calls.

corresponding compiler is Intel icc (v15.0.4). A prototypical implementation of
Nasty-MPI is publicly accessible on Github2.

4.1 Methodology

All experiments include at least two MPI processes which communicate by im-
properly synchronized RMA operations. The correctness model of these appli-
cations is defined by included assert statements in the source code to uncover
the synchronization errors.

Each experiment is evaluated with all MPI libraries in 4 scenarios, which are
based on two parameters. The first parameter determines process locality, i.e.,
the origin and target process reside either on a single node or on two distant
nodes. Process locality is an important property, because MPI libraries may hide
communication latency in MPI RMA calls by utilizing shared memory semantics.
The second parameter depends on whether Nasty-MPI is linked to the target
application. If Nasty-MPI is linked, all applications are repeatedly executed with
distinct combinations of the Nasty-MPI configuration parameters, listed in Ta-
ble 1. The assumption is that, if Nasty-MPI is not linked, the MPI libraries can
successfully execute the applications, i.e., the assert statements manifest no er-
rors. In this case, there has to be at least one configuration for Nasty-MPI which
forces a pessimistic execution to uncover the synchronization bug.

4.2 Effectiveness of Nasty-MPI

The first test case is a binary tree broadcast algorithm which was described by
Luecke et al. [13]. The code relies on MPI Get being a blocking MPI call because
there is no synchronization action which actually completes it. The relevant
snippet is shown in Fig. 5. Executing this program setup leads to different results,
depending on the test setup. If the communicating processes, involved in the
MPI Get, reside on distant nodes no MPI library can successfully terminate this

2 https://github.com/rkowalewski/nasty-MPI

9

program due to an infinite loop. But the situation changes, if both processes
reside on the same node. While IBM MPI and open MPI again cannot exit from
the polling loop, the implementations of Intel (SuperMUC) and Cray (NERSC
Edison) can complete the RMA call. This demonstrates that process locality
may impact the behavior of RMA communications, depending on the underlying
MPI library. If Nasty-MPI is linked and the completion stage is not skipped
(i.e., NASTY SKIP COMPLETION STAGE = 0), the MPI library does never receive
the MPI Get request, because no synchronization action completes the buffered
RMA call.

MPI_Win_lock(target);
double	check	=	0;
…
while	(check	==	0)
{
MPI_Get(&check,	...,	target);
/*	Missing	Synchronization	 */
}
...

MPI_Win_unlock(target);

Fig. 5: Non-completed MPI Get.

MPI_Win_lock_all(win);

MPI_Accumulate(…,
predecessor,	…,	win);

do	{
MPI_Fetch_and_op(…, self,	…,win);	

MPI_Win_flush(self);
} while	(flag);

MPI_Win_unlock_all(win);

Fig. 6: Improperly synchronized Acc.

The second test case is an implementation of the MCS lock [15] which can be
implemented using MPI RMA primitives [10]. In the code for acquiring the lock
(Fig. 6), a requesting process issues two RMA calls which are directed to different
targets. For test purposes, we have injected a synchronization error in such a
way that only one target is synchronized. As listed in Table 3, all MPI libraries,
except Intel, can successfully execute this program. This observation confirms
that some MPI libraries always complete all pending RMA calls, regardless of
the synchronization target. In Nasty-MPI, however, only the second RMA call
reaches the native MPI library, while the first MPI Accumulate is rejected in the
completion stage, causing a manifestation of the synchronization bug.

The third test case is a slight modification from the example in Fig. 1b. The
MPI Put modifies a remote memory location x and is only locally completed by a
local flush. All MPI libraries pass the assert statement, i.e., the MPI Get fetches
the modified value by the MPI Put. If Nasty-MPI is linked and the parameter
NASTY LOCAL COMPLETION ENABLED is set to 1, it defers the MPI Get to the unlock
call, leading to a manifestation of the synchronization error.

Program 4 tests the ordering guarantees of the MPI libraries. It requires that
two consecutive remote writes, one MPI Put followed by an MPI Accumulate, are
completed in target memory as encountered by the program order. Still, there is
no synchronization action to ensure this order. If the origin and target processes
reside on a single node, all MPI libraries, except Intel, complete both RMA calls
in program order. Nasty-MPI can easily force the synchronization bug by setting
NASTY SUBMIT ORDER to reverse po.

10

Finally, Nasty-MPI helped to detect a synchronization bug in the DASH
library, while it was applied to a large test suite. The root cause was to pass a
memory buffer, located on the stack frame, to a MPI Put. However, the matching
synchronization call was outside of the method scope, causing the memory buffer
to be invalid if the RMA call is deferred to this synchronization call.

Table 3: Results of the experiments without linking Nasty-MPI.

Edison SuperMUC

No. Test Program Cray IBM Intel oMPI

1 Binary Broadcast [13] 7 3 7 3
2 MCS lock [15] 7 7 3 7
3 Local completion 7 7 7 7
4 Unordered Put calls 7 7 3 7

3 Synchronization error manifested.
7 Synchronization error not manifested.

5 Related Work

There is a large number of approaches for automatic bug detection in two-sided
MPI [21,5,20,4], however, they cannot be applied to one-sided MPI due to the
contrary synchronization model.

A tool, called MC-Checker [3], is closely related to this paper. It can detect
memory consistency errors by profiling both MPI RMA and native memory ac-
cesses, i.e., loads and stores. Based on the MPI semantics, it effectively finds
potential data races even across different origins which concurrently access over-
lapping target memory. However, MC-Checker only covers the MPI-2 standard
which follows different synchronization semantics compared to MPI-3. Moreover,
Nasty-MPI follows a different approach, since it forces synchronization errors,
rather than detecting them. MUST [9] focuses on deadlocks and semantic pa-
rameter checking, which is not the scope of Nasty-MPI. However, both tools can
complement each other to debug memory consistency and semantic parameter
errors. Scalasca [8] detects inefficient wait states in MPI RMA applications. An-
other approach applies model checking [19] for deadlock detection in MPI RMA
programs. Furthermore, there are tools from other PGAS languages. UPC-Thrill
[18] uncovers data races in UPC programs. Significant semantic differences be-
tween UPC and MPI RMA distinguish this tool from Nasty-MPI.

6 Conclusion and Future Work

This paper discusses the semantic challenges of MPI-3 RMA and presents Nasty-
MPI, a novel approach to support the detection of latent synchronization bugs in
MPI applications. Based on the complex RMA semantics, we apply a systematic

11

strategy to force latent errors, which may be easily manifested with the help
of program invariants. An experimental evaluation has demonstrated that we
can uncover synchronization errors which would be otherwise go unnoticed for
a wide range of synchronization scenarios. Furthermore, the tool detected a
synchronization bug in the DASH library [6].

We currently evaluate to track native memory accesses by using tools, such
as Pin [14]. This enables to more effectively force synchronization errors between
MPI RMA and native memory accesses. Another challenge are RMA communi-
cations which use complex MPI data types (e.g., structs). Currently, we cannot
apply the full potential of Nasty-MPI to such RMA operations, as it requires to
understand the memory layout of complex MPI data types.

Finally, Nasty-MPI may be used by any programmer who wants to verify the
semantic correctness of a given MPI RMA program.

Acknowledgments

We gratefully acknowledge funding by the German Research Foundation (DFG)
through the German Priority Programme 1648 Software for Exascale Computing
(SPPEXA).

References

1. Arnold, D., Ahn, D., de Supinski, B., Lee, G., Miller, B., Schulz, M.: Stack Trace
Analysis for Large Scale Debugging. In: Parallel and Distributed Processing Sym-
posium, 2007. IPDPS 2007. IEEE International. pp. 1–10 (March 2007)

2. Bell, C., Bonachea, D., Nishtala, R., Yelick, K.: Optimizing Bandwidth Limited
Problems Using One-sided Communication and Overlap. In: Proceedings of the
20th International Conference on Parallel and Distributed Processing. pp. 84–84.
IPDPS’06, IEEE Computer Society, Washington, DC, USA (2006)

3. Chen, Z., Dinan, J., Tang, Z., Balaji, P., Zhong, H., Wei, J., Huang, T., Qin,
F.: MC-Checker: Detecting Memory Consistency Errors in MPI One-Sided Ap-
plications. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. pp. 499–510. IEEE Press (2014)

4. Chen, Z., Li, X., Chen, J.Y., Zhong, H., Qin, F.: SyncChecker: Detecting Synchro-
nization Errors Between MPI Applications and Libraries. In: Proceedings of the
2012 IEEE 26th International Parallel and Distributed Processing Symposium. pp.
342–353. IPDPS ’12, IEEE Computer Society, Washington, DC, USA (2012)

5. DeSouza, J., Kuhn, B., de Supinski, B.R., Samofalov, V., Zheltov, S., Bratanov,
S.: Automated, Scalable Debugging of MPI Programs with Intel Message Checker.
In: Proceedings of the Second International Workshop on Software Engineering
for High Performance Computing System Applications. pp. 78–82. SE-HPCS ’05,
ACM, New York, NY, USA (2005)

6. Fürlinger, K., Glass, C., Knüpfer, A., Tao, J., Hünich, D., Idrees, K., Maiterth,
M., Mhedheb, Y., Zhou, H.: Dash: Data structures and algorithms with support
for hierarchical locality. In: Euro-Par 2014 Workshops (Porto, Portugal) (2014)

7. Gropp, W., Thakur, R.: An Evaluation of Implementation Options for MPI One-
Sided Communication. In: Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface, pp. 415–424. Springer (2005)

12

8. Hermanns, M.A., Miklosch, M., Böhme, D., Wolf, F.: Understanding the formation
of wait states in applications with one-sided communication. In: Proceedings of the
20th European MPI Users’ Group Meeting. pp. 73–78. ACM (2013)

9. Hilbrich, T., Protze, J., Schulz, M., de Supinski, B.R., Müller, M.S.: MPI Runtime
Error Detection with MUST: Advances in Deadlock Detection. In: Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis. pp. 30:1–30:11. SC ’12, IEEE Computer Society Press, Los
Alamitos, CA, USA (2012)

10. Hoefler, T., Dinan, J., Thakur, R., Barrett, B., Balaji, P., Gropp, W., Underwood,
K.: Remote Memory Access Programming in MPI-3. ACM Trans. Parallel Comput.
2(2), 9:1–9:26 (Jun 2015)

11. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System.
Commun. ACM 21(7), 558–565 (Jul 1978)

12. Leibniz Supercomputing Centre, Munich, Germany: SuperMUC Petascale System.
https://www.lrz.de/services/compute/supermuc/systemdescription/

13. Luecke, G.R., Spanoyannis, S., Kraeva, M.: The Performance and Scalability of
SHMEM and MPI-2 One-sided Routines on a SGI Origin 2000 and a Cray T3E-600:
Performances. Concurr. Comput. : Pract. Exper. 16(10), 1037–1060 (Aug 2004)

14. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Janapa, V., Hazelwood, R.K.: Pin: Building customized program analysis tools
with dynamic instrumentation. In: In PLDI ’05: Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and implementation. pp.
190–200. ACM Press (2005)

15. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for Scalable Synchronization on
Shared-memory Multiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (Feb
1991)

16. MPI Forum: MPI: A Message-Passing Interface Standard. Version 3.0 (September
2012), available at: http://www.mpi-forum.org

17. National Energy Research Center, United States: Edison System Config-
uration. https://www.nersc.gov/users/computational-systems/edison/

configuration/

18. Park, C.S., Sen, K., Hargrove, P., Iancu, C.: Efficient Data Race Detection for Dis-
tributed Memory Parallel Programs. In: Proceedings of 2011 International Con-
ference for High Performance Computing, Networking, Storage and Analysis. pp.
51:1–51:12. SC ’11, ACM, New York, NY, USA (2011)

19. Pervez, S., Gopalakrishnan, G., Kirby, R., Thakur, R., Gropp, W.: Formal Verifi-
cation of Programs That Use MPI One-Sided Communication. In: Mohr, B., Träff,
J., Worringen, J., Dongarra, J. (eds.) Recent Advances in Parallel Virtual Machine
and Message Passing Interface, Lecture Notes in Computer Science, vol. 4192, pp.
30–39. Springer Berlin Heidelberg (2006)

20. Vakkalanka, S.S., Sharma, S., Gopalakrishnan, G., Kirby, R.M.: ISP: A Tool for
Model Checking MPI Programs. In: Proceedings of the 13th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming. pp. 285–286. PPoPP
’08, ACM, New York, NY, USA (2008)

21. Vetter, J.S., de Supinski, B.R.: Dynamic Software Testing of MPI Applications with
Umpire. In: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing.
SC ’00, IEEE Computer Society, Washington, DC, USA (2000)

