
Investigating the Performance and Productivity of DASH Using
the Cowichan Problems

Karl Fürlinger, Roger Kowalewski, Tobias Fuchs and Benedikt Lehmann
Ludwig-Maximilians-Universität (LMU) Munich
Computer Science Department, MNM Team
Oettingenstr. 67, 80538 Munich, Germany

Email: first.last@nm.ifi.lmu.de

ABSTRACT

DASH is a new realization of the PGAS (Partitioned Global
Address Space) programming model in the form of a C++
template library. Instead of using a custom compiler, DASH
provides expressive programming constructs using C++ ab-
straction mechanisms and offers distributed data structures
and parallel algorithms that follow the concepts employed by
the C++ standard template library (STL).

In this paper we evaluate the performance and productivity
of DASH by comparing our implementation of a set of bench-
mark programs with those developed by expert programmers
in Intel Cilk, Intel TBB (Threading Building Blocks), Go
and Chapel. We perform a comparison on shared memory
multiprocessor systems ranging from moderately parallel mul-
ticore systems to a 64-core manycore system. We additionally
perform a scalability study on a distributed memory system
on up to 20 nodes (800 cores). Our results demonstrate that
DASH offers productivity that is comparable with the best es-
tablished programming systems for shared memory and also
achieves comparable or better performance. Our results on
multi-node systems show that DASH scales well and achieves
excellent performance.

ACM Reference Format:
Karl Fürlinger, Roger Kowalewski, Tobias Fuchs and Benedikt
Lehmann. 2018. Investigating the Performance and Productivity

of DASH Using the Cowichan Problems. In HPC Asia 2018 WS:
Workshops of HPC Asia 2018, January 31, 2018, Chiyoda, Tokyo,
Japan. ACM, New York, NY, USA, 10 pages. https://doi.org/10.

1145/3176364.3176366

1 INTRODUCTION

As computer systems are getting increasingly complex, it is
becoming harder and harder to achieve a significant fraction
of peak performance. This is true at the very high end,
where supercomputers today are composed of hundreds of
thousand compute cores and incorporate CPUs and GPUs

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

HPC Asia 2018 WS, January 31, 2018, Chiyoda, Tokyo, Japan

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6347-1/18/01. . . $15.00
https://doi.org/10.1145/3176364.3176366

in heterogeneous designs, but also at the low end, where
application developers have to deal with shared memory
systems of increasing scale (number of cores) and complex
multi-level memory systems. Top-of-the-line server CPUs
will soon have up to 32 physical cores on a single chip and
many-core CPUs such as Intel’s Knights Landing Xeon Phi
architecture consists of up to 72 cores.

Of course, performance is only one side of the story and
for many developers productivity is at least as big a concern
as performance. This is especially true in newer application
areas of high performance and parallel computing such as
the life sciences or the digital humanities, where developers
are less willing to spend large amounts of time to write and
fine-tune their parallel applications.

In this paper we evaluate the performance and produc-
tivity characteristics of DASH, a realization of the PGAS
paradigm in the form of a C++ template library. We start
with an evaluation on shared memory systems, where we
compare DASH to results obtained using Intel Cilk, Intel
TBB, Go, and Chapel. To conduct our comparisons we rely
on ideomatic implementations of the Cowichan problems by
expert programmers that were developed in the course of a
related study by Nanz et al. [17]. In addition, we perform a
scalability study on a distributed memory system on up to 20
nodes (800 cores). Our results demonstrate that DASH offers
productivity that is comparable with the best established
programming systems for shared memory and also achieves
comparable or better performance.

The rest of this paper is organized as follows: In Sect. 2
we provide background on the material covered in this pa-
per by providing a short general overview of DASH and the
Cowichan problems. In Sect. 3 we then describe the imple-
mentation of the Cowichan problems in DASH and compare
the programming constructs employed with those used by
expert programmers for their Go, Chapel, Cilk and TBB
implementation. In Sect. 4 we provide an evaluation of the
performance and productivity of DASH compared to these
other implementations on a shared memory system and we
provide a scaling study of the DASH code on multiple nodes
of a supercomputing system. Sect. 5 discusses related work
and in Sect. 6 we conclude and provide an outlook on future
work.

https://doi.org/10.1145/3176364.3176366
https://doi.org/10.1145/3176364.3176366
https://doi.org/10.1145/3176364.3176366

HPC Asia 2018 WS, January 31, 2018, Chiyoda, Tokyo, JapanKarl Fürlinger, Roger Kowalewski, Tobias Fuchs and Benedikt Lehmann

2 BACKGROUND

This section provides background information on our PGAS
programming system DASH and the set of benchmark kernels
we have used to evaluate its productivity and performance.

2.1 DASH

DASH [8] is a C++ template library that offers distributed
data structures and parallel algorithms. A basic data struc-
ture available in DASH is the distributed array (dash::Array)
that can span the memory of multiple processes (called ex-
ecution units in DASH terminology), potentially running
on separate interconnected nodes. Each unit can access all
elements of the distributed array. If remote data is accessed,
one-sided operations are triggered using the DASH runtime
system (DART) [25]. DART is implemented on top of MPI-
3 RMA (remote memory access) [15] using passive target
synchronization mode. One-sided access operations are imple-
mented using MPI Put (writing a remote value) or MPI Get

(reading a remote value), while the remote (target) unit is
never involved in the data transfer operation. This mode of
one-sided access maps well to remote direct memory access
(RDMA) technology, which is supported by every modern
interconnect network and is even used for the implementation
of the classic two-sided (send-receive) model in MPI [9].

Access to local data elements can be performed using
direct memory read and write operations and the local part
of a data structure is explicitly exposed to the programmer
using a local view proxy object. For example, arr.local
represents all array elements stored locally and access to
these elements is of course much faster than remote access.
Whenever possible, the owner computes model, where each
unit operates on its local part of a data structure, should be
used for maximum performance in DASH.

Besides one-dimensional arrays, DASH also offers shared
scalars (dash::Shared) and multidimensional arrays (dash::NArray).
Other data structures, notably dynamic (growing, shrinking)
containers such as hash maps, are currently under develop-
ment. DASH offers a flexible way to specify the data distribu-
tion and layout for each data structure using so-called data
distribution patterns (dash::Pattern). For one-dimensional
containers the data distribution patters that can be specified
are cyclic, block-cyclic, and blocked. In multiple dimensions,
these specifiers can be combined for each dimension and in
addition tiled distributions are supported.

DASH also supports the notion of teams, i.e., groups of
units that form the basis of memory allocations and collective
communication operations. New teams are built by splitting
an existing team starting with dash::Team::All(), the team
that contains all units that comprise the program. If no team
is specified when instantiating a new data structure, the
default team dash::Team::All() is used.

DASH generalizes concepts found in the C++ Standard
Template Library (STL). STL offers containers and algo-
rithms, which are coupled using an iterator interface. Simi-
larly, DASH data structures offer global iterators (arr.begin(),
arr.end()) and local iterators (arr.local.begin(), arr.local.end()).

1 #include <iostream >

2 #include <libdash.h>

3

4 int main(int argc , char *argv []) {

5 dash::init(&argc , &argv);

6

7 // 2D integer matrix with 10 rows , 8 cols

8 // default distribution is blocked by rows

9 dash::NArray <int , 2> mat(10, 8);

10

11 for (int i=0; i<mat.local.extent (0); ++i) {

12 for (int j=0; j<mat.local.extent (1); ++j) {

13 mat.local(i, j) = 10* dash::myid()+i+j;

14 }

15 }

16

17 dash:: barrier ();

18

19 auto max = dash:: max_element(mat.begin(), mat.end());

20

21 if (dash::myid() == 0) {

22 print2d(mat);

23 cout << "Max is " << (int)(*max) << endl;

24 }

25

26 dash:: finalize ();

27 }

Compile and Run:

$> mpicc -L ... -ldash -o example example.

cc

$> mpirun -n 4 ./ example

Output:

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7 8

2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17

11 12 13 14 15 16 17 18

12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27

21 22 23 24 25 26 27 28

22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37

Max is 37

Figure 1: A basic example DASH program (left)
and its output when run with four execution units
(right).

Thus STL algorithms (e.g., std::fill, std::iota) can be
used in conjunction with DASH containers. DASH addition-
ally provides parallel versions of selected algorithms. For ex-
ample, dash::fill takes a global range (delimited by global
iterators) and performs the fill operation in parallel.

DASH also generalizes the concepts of pointer, reference,
and memory allocation found in regular C++ programs by
offering global pointers (dash::GlobPtr), global references
(dash::GlobRef), and global memory regions (dash::GlobMem).
These constructs allow DASH to offer a fully-fledged PGAS
programming system akin to UPC (Unified Parallel C) [7]
while not requiring a custom compiler.

Fig. 1 shows a basic DASH program using a 2D array
(matrix) data structure. The data type (int) and dimension
(2) are compile-time template parameters, the extents in
each dimension are set at runtime. In the example a (10× 8)
matrix is allocated and distributed over all units (since no

Investigating the Performance and Productivity of DASH Using the Cowichan ProblemsHPC Asia 2018 WS, January 31, 2018, Chiyoda, Tokyo, Japan

team is specified explicitly). No specific data distribution
pattern requested, so the default distribution by block of
rows over all units is used. When run with four units, each
unit gets ⌈10/4⌉ = 3 matrix rows, except for the last unit,
which receives only one row.

Lines 11 to 15 in Fig. 1 show data access using the local
matrix view by using the proxy object mat.local. All ac-
cesses are performed using local indices (i.e., mat.local(1,2)
refers to the element stored locally at position (1,2)) and
no communication operation is performed. The barrier in
line 17 ensures that all units have initialized their local part
of the data structure before the max element() algorithm is
used to find the maximum value of the whole matrix. This
is done by specifying the global range that encompasses all
matrix element (mat.begin() to mat.end()). In the library
implementation of max element(), each unit determines the
locally stored part of the global range and performs the search
for the maximum there. Afterwards a reduction operation is
performed to find the global maximum. The return value of
max element() is a global reference for the location of the
global maximum. In lines 21 to 24, unit 0 first prints the
whole matrix (the code for print2d() is not shown) and then
outputs the maximum by dereferencing the global reference
max.

The right part of Fig. 1 shows the output produced by
this application (bottom) and how to compile and run the
program (top). Since DASH is implemented on top of MPI,
the usual platform-specific mechanisms for compiling and
running MPI programs are used. The output shown is from
a run with four units (MPI processes), hence the first set of
three rows are initialized to 0 . . . 9, the second set of three
rows to 10 . . . 19, and so on.

2.2 The Cowichan Problems

The Cowichan problems [23] (named after a tribal area in the
Canadian Northwest) are a set of small benchmark kernels
that have been developed primarily for the purpose of as-
sessing the usability of parallel programming systems. There
are two versions of the Cowichan problems and we restrict
ourselves to a subset of the problems found in the second set.
Our work is based on previous work by Nanz et al. [17] in
that we use the code publicly available from their study 1 to
compare with our implementation in DASH. The code devel-
oped in this study has been created by expert programmers
in Go, Chapel, Cilk and TBB and can thus be regarded as
idiomatic for each approach and free of obvious performance
defects.

The five (plus one) problems we consider in our study are
the following:

randmat: Generate a (nrows × ncols) matrix mat of
random integers in the range 0, ..., max− 1 using a de-
terministic pseudo-random number generator (PRNG)
with a given seed value seed. The result must be inde-
pendent of the degree of parallelism (number of threads
or processes) employed.

1https://bitbucket.org/nanzs/multicore-languages/src

Table 1: Data structures consumed and produced by
the Cowichan kernels implemented in this study.

Benchmark Input Output

randmat nrows1, ncols1, seed1, max1 mat2

thresh mat2, p1 mask2

winnow mat2, mask2, nelem1 points3

outer points3 omat4, vec5

matvec omat4, vec5 res5

chain nrows1, ncols1, seed1, max1, p1, nelem1 res5

1 Integer scalar.
2 (nrows× ncols) integer/boolean matrix.
3 Vector of (row, col) pairs of length nelem.
4 (nelem× nelem) matrix of floating point values.
5 Vector of floating point values of length nelem.

thresh: Given an integer matrix mat, and a thresholding
percentage p, compute a boolean matrix mask of similar
size, such that mask selects p percent of the largest
values of mat.

winnow: Given an integer matrix mat, a boolean matrix
mask, and a desired number of target elements nelem,
perform a weighted point selection operation. Apply
the mask to the matrix to extract a list of all selected
points as 3-tuples in the form (row, col, val), where
(row, col) is the location of the selected point in mat

and val is its value. Sort the list in ascending order by
value and select nelem equally spaced elements. The
result is a vector points of (row, col) pairs of length
nelem.

outer: Given a vector of nelem (row, col) points, com-
pute a (nelem × nelem) outer product matrix omat and
a vector vec of floating point values. For i ≠ j the (i, j)
entry in omat is the Euclidean distance between the
i-th point and the j-th point in the list of given points.
The diagonals are set to the sum of all entries in a row,
times the number of columns. The resulting matrix is
symmetric and diagonally dominant. The vector vec is
formed by computing the Euclidean distance between
each point and (0, 0).

matvec: Given an nelem × nelem matrix mat and a
vector vec, compute the matrix-vector product (row-
by-row inner product) res.

chain: Combine the kernels in a sequence such that the
output of one becomes the input for the next. I.e., chain
= randmat ◦ thresh ◦ winnow ◦ outer ◦ matvec.

3 IMPLEMENTATION CHALLENGES
AND DASH FEATURES USED

In this section we describe the challenges we encountered
when implementing the Cowichan problems. We describe the
DASH features used in our code and how they compare to
the constructs employed by the reference implementations
developed by expert programmers in Go, Chapel, Cilk, and

https://bitbucket.org/nanzs/multicore-languages/src

HPC Asia 2018 WS, January 31, 2018, Chiyoda, Tokyo, JapanKarl Fürlinger, Roger Kowalewski, Tobias Fuchs and Benedikt Lehmann

TBB in the study by Nanz et al. [17]. Naturally this small
set of benchmarks only exercises a limited set of the features
offered by either programming approach. However, we believe
that the requirements embedded in the Cowichan problems
are relevant to a wide set of other uses cases, including the
classic HPC application areas and beyond.

3.1 Memory Allocation and Data
Structure Instantiation

The Cowichan problems use one- and two-dimensional ar-
rays as the main data structures. Table 1 shows the data
structures consumed and produced in each of the kernels,
referring to the variable names used in most implementation
source files [17, 22]). Of course 1D arrays are widely sup-
ported by all programming systems. True multidimensional
arrays, however, are not universally available and as a conse-
quence workarounds are commonly used. The Cilk and TBB
implementation both adopt a linearized representation of the
2D matrix and use a single malloc call to allocate the whole
matrix:

int *matrix = (int*) malloc(sizeof(int)*nrows*ncols);

Access is then not available by using the more natural 2D
interface but by explicitly computing the offset of the element
in the linearized representation:

int val = matrix[i*ncols + j]; // element at (i,j)

Go uses a similar approach but bundles the dimensions to-
gether with the allocated memory in a custom type:

type ByteMatrix struct {

Rows , Cols int

array []byte

}

matrix := ByteMatrix{r, c, make ([]byte , r*c)}

Chapel has a very concise and elegant syntax for the allo-
cation and direct element-wise access of multidimensional
arrays:

var matrix: [1.. nrows , 1.. ncols] int (32);

int val = matrix[i, j];

The DASH syntax is similarly concise and elegant and offers
the natural 2D access interface (using round parentheses,
because in C++ the square bracket operator can only take
one parameter).

dash::NArray <int , 2> matrix(nrows , ncols);

int val = matrix(i,j);

3.2 Work Sharing

In all benchmarks work has to be distributed onto multiple
processes or threads, for example when computing the ran-
dom values in randmat in parallel. randmat requires that
the result be independent of the degree of parallelism used
and all implementations solve this issue by using a separate
deterministic seed value for each row of the matrix. A whole
matrix row is then the unit of work that is distributed among
the processes or threads. The same strategy is also used for
outer and product.

In Cilk, the corresponding code looks like the following, itera-
tion space partitioning is done automatically by the compiler.

cilk_for (int i = 0; i < nrows; i++) {

// perform operation on row i...

}

TBB uses C++ template mechanisms to achieve a similar
goal. A custom runtime scheduler manages the distribution
of the specified range (0, nrows) onto the available threads
and for each partition, the given lambda is called, which
determines the actual bounds for the current partition and
invokes a sequential loop.

// TBB

parallel_for(

// range is typedef for tbb:: blocked_range <size_t >

range(0, nrows),

[=](range r) {

auto end = r.end ();

for (size_t i = r.begin(); i != end; ++i) {

// perform operation on row i

}

});

Go does not have built-in constructs for simple work sharing
loops and the functionality has to be created manually using
goroutines, channels, and ranges.

// Go

work := make(chan int , 256)

go func() {

for i := 0; i < nelts; i++ {

work <- i

}

close(work)

}()

done := make(chan bool)

NP := runtime.GOMAXPROCS (0)

// Go (continued)

for i := 0; i < NP; i++ {

go func() {

for i := range work {

// perform operation on row i

}

done <- true

}()

}

for i := 0; i < NP; i++ {

<-done

}

First, the channel work is created with a buffer capacity of 256
elements. Then a goroutine is used to populate the channel
with all row indices. For each processor in the system a
goroutine is then started concurrently that reads values from
the channel, the construct for i := range work does this
automatically until the channel is closed. Finally termination
is signaled using the channel done.

In Chapel this kind of work distribution can simply be
expressed as a parallel loop (forall) and the compiler and
runtime system have the duty to figure out the actual work
distribution.

// Chapel

Investigating the Performance and Productivity of DASH Using the Cowichan ProblemsHPC Asia 2018 WS, January 31, 2018, Chiyoda, Tokyo, Japan

const rows = 1 .. nrows;

forall i in rows {

// perform operation on row i

}

In DASH, the work distribution follows the data distribution.
I.e., each unit is responsible for computing on the data that
is locally resident, the owner computes model. This is the
corresponding code in DASH:

// DASH

auto local = matrix.local;

for (auto i=0; i<local.extent (0); i++) {

// perform operation on row i

}

Each unit determines its locally stored portion of the matrix
(guaranteed to be a set of rows by the data distribution
pattern used) and works on it independently. In this example
the matrix is accessed using local row indices. If the global
row index is needed, the container’s data distribution pattern
can be queried:

auto glob = matrix.pattern ().global ({i,0});

int grow = glob [0]; // global row of local (i,0)

3.3 Global Max Reduction

In thresh, the max value held by the matrix has to be deter-
mined to initialize other data structures to their correct size.
However, the Go reference implementation doesn’t actually
perform this step and instead just uses a default size of 100,
Go is thus not discussed further in this section.

In Cilk the following function, using a reducer max ob-
ject together with a parallel loop over the rows, is employed
to find the maximum. Surprisingly more than ten lines of
code are used for this relatively simple task. Evidently, the
main complexity stems from the fact that finding the local
maximum and combining the local maxima into a global max-
imum using the reducer max object are handled manually
and separately.

// Cilk

int reduce_max (int nrows , int ncols) {

cilk:: reducer_max <int > max_reducer (0);

cilk_for (int i = 0; i < nrows; i++) {

int begin = i;

int tmp_max = 0;

for (int j = 0; j < ncols; j++) {

tmp_max = std::max (tmp_max , matrix [begin*

ncols + j]);

}

max_reducer.calc_max (tmp_max);

}

return max_reducer.get_value ();

}

In TBB the following code fragment is used to find the
maximum (the code is simplified slightly to remove interwoven
code fragments that compute the histogram in the same step).
Again a special construct of the programming system is used
for performing a parallel reduction (tbb::parallel reduce).
The computation of the local maximum and reducing the
local values to the global max are again handled separately.

The latter step is performed by the tbb::parallel reduce

using the perhaps slightly confusing syntax expecting two
lambda expressions.

// TBB

nmax = tbb:: parallel_reduce(

range(0, nrows), 0,

[=](range r, int result)->int {

for (size_t i = r.begin(); i != r.end(); i++) {

for (int j = 0; j < ncols; j++) {

result = max(result , (int)matrix[i*ncols + j

]);

}

}

return result;

},

[](int x, int y)->int {

return max(x, y);

});

Chapel again has the most concise syntax of all approaches,
simply stating the intent of performing a max reduction over
the matrix:

// Chapel

var nmax = max reduce matrix;

The code in DASH is almost as compact, however, since we
can use the max element() algorithm to find the maximum.
Instead of specifying the matrix object directly, in DASH
we have to couple the algorithm and the container using the
iterator interface:

// DASH

int nmax = (int)*dash:: max_element(mat.begin (),

mat.end());

Note that this algorithm is not just provided in DASH for
this special use cases but is available by design. The STL
provides min|max|minmax element() as an important and
natural algorithmic building block and so does DASH in a
generalized parallel variant.

3.4 Parallel Histogramming

thresh requires that a global cumulative histogram over an
integer matrix is computed. Thus, for each integer value
0, . . . , nmax − 1 we need to determine the number of occur-
rences in the given matrix in parallel. There are several
possible strategies for implementing this. One could keep just
a single shared histogram and atomically update it from mul-
tiple threads. Alternatively, one or multiple histograms can
be computed by each thread in parallel and later combined
into a single global histogram. The latter strategy is the one
used by all implementations.
Chapel uses an approach where a separate histogram per
matrix row is computed and these nrows histograms are then
combined (in parallel over the ‘columns’).

// Chapel

var histogram: [1.. nrows , 0..99] int;

const RowSpace = {1.. nrows};

const ColSpace = {1.. ncols};

forall i in RowSpace {

for j in ColSpace {

histogram[i, matrix[i, j]] += 1;

}

HPC Asia 2018 WS, January 31, 2018, Chiyoda, Tokyo, JapanKarl Fürlinger, Roger Kowalewski, Tobias Fuchs and Benedikt Lehmann

}

const RowSpace2 = {2.. nrows};

forall j in 0..(nmax) {

for i in RowSpace2 {

histogram[1, j] += histogram[i, j];

}

}

TBB uses a similar strategy to Chapel’s (not shown), whereas
Cilk only computes a single histogram per thread, as shown
below:

// Cilk

void fill_histogram(int nrows , int ncols) {

int P = __cilkrts_get_nworkers ();

cilk_for (int r = 0; r < nrows; ++r) {

int Self = __cilkrts_get_worker_number ();

for (int i = 0; i < ncols; i++) {

histogram [Self][randmat_matrix[r*ncols +i]]++;

}

}

}

void merge_histogram () {

int P = __cilkrts_get_nworkers ();

cilk_for (int v = 0; v < 100; ++v) {

int merge_val = __sec_reduce_add (histogram [1:(P

-1)][v]);

histogram [0][v] += merge_val;

}

}

sec reduce add is a bultin function for array section that
returns the sum of all array elements.
Go (not shown) uses a similar strategy to Cilk (one histogram
per thread) but actually sends the histogram data using a go
channel and combines the received histograms in a sequential
manner.

In DASH we use a global array to compute the histogram.
First, each unit computes the histogram for the locally
stored data, by simply iterating over all local matrix ele-
ments and updating the local histogram (histo.local). Then
dash::transform is used to combine the local histograms into
a single global histogram located at unit 0. dash::transform
is modeled after std::transform, a mutating sequence algo-
rithm. Like the STL variant, the algorithm works with two
input ranges that are combined using the specified opera-
tion (last parameter) into an output range. The first two
iterators are the begin and end of the first input range, the
third iterator is the begin of the second input range, and the
fourth iterator specifies the output range. In DASH these
operations (addition in this example) are guaranteed to be
performed atomically and the DASH runtime system uses
MPI Accumulate, which guarantees atomic element-wise up-
dates.

// DASH

dash::Array <unsigned > hist((nmax + 1) * dash::size())

;

dash::fill(hist.begin(), hist.end(), 0);

for(auto ptr = mat.lbegin (); ptr != mat.lend(); ++ptr

)

++(hist.local[*ptr]);

dash:: barrier ();

if (dash::myid() != 0) {

dash::transform <unsigned >(hist.lbegin (), hist.lend

(),

hist.begin(), hist.begin

(),

dash::plus <unsigned >());

}

4 EVALUATION

In this section we evaluate DASH in relation to four estab-
lished parallel programming approaches: Go, Chapel, Cilk
and TBB.

Chapel [5] is an object-oriented partitioned global address
space (PGAS) programming language developed since the
early 2000s by Cray, originally as part of DARPA’s High
Productivity Computing Systems (HPCS) program. Chapel
tries to offer higher-level programming abstractions than
what is available from the most commonly used programming
approaches in HPC, MPI and OpenMP. We have used Chapel
version 1.15.0 in all our experiments.

Go [6] is a general purpose systems-level programming
language developed at Google in the late 2000s that focuses on
concurrency as a first-class concern. Go supports lightweight
threads called goroutines which are invoked by prefixing a
function call with the ‘go’ keyword. Channels provide the
idiomatic way for communication between goroutines but
since all goroutines share a single address space, pointers can
also be used for data sharing. We have used Go version 1.8
in our experiments.

Cilk [3] started as an academic project at MIT in the
1990s. Since the late 2000s the technology has been extended
and integrated as Cilk Plus into the commercial compiler
offerings from Intel and more recently open source implemen-
tations for the GNU Compiler Collection (GCC) and LLVM
became available. Cilk’s initial focus was on lightweight tasks
invoked using the spawn keyword and dynamic workstealing.
Later a parallel loop construct (cilk for) was added. We have
used Cilk as integrated in Intel C/C++ compilers version
17.0.2.174.

Intel Threading Building Blocks (TBB) [20] is a C++ tem-
plate library for parallel programming that provides tasks,
parallel algorithms and containers using a work-stealing ap-
proach that was inspired by the early work on Cilk. We have
used TBB version 2017.0 in our experiments, which is part
of Intel Parallel Studio XE 2017.

DASH (described in more detail in Sect. 2.1) is a real-
ization of the PGAS programming model in the form of a
C++ template library. DASH offers distributed data struc-
tures and parallel algorithms that conceptually follow the
design of the Standard Template Library (STL). DASH pro-
grams can be run both on shared memory and on distributed
memory systems and one-sided communication primitives
are used when communication between nodes is necessary.
We used DASH version dash-0.2.0-2656-ga76ff38 in all

Investigating the Performance and Productivity of DASH Using the Cowichan ProblemsHPC Asia 2018 WS, January 31, 2018, Chiyoda, Tokyo, Japan

experiments which is available as free open source software
under a BSD licenese2.

We investigate different problem sizes of the Cowichan ker-
nels and denote the size used in the form N=size to signify
the size of the data structures used. In more detail, the follow-
ing settings are used: nrows=size, ncols=size, nelem=size,
p=50, s=31337. I.e., the seed value for the random number
generator is 31337, thresh selects 50 percent of the largest
values, the size of all matrices is (size×size), and max is set
to 100 in all instances. These values were chosen for compati-
bility with the study by Nanz et al, in which all experiments
were performed with N=40000. All reported results are the
best achieved runtimes in ten repetitions.

4.1 Platforms

The platforms we have used in our evaluation study are as
follows:

IBEX: A moderately parallel shared memory multicore
system with two sockets using two Intel E5-2630Lv2
(Ivy Bridge-EP) CPUs, 2 × 6 physical cores, 15 MB
L3 cache per CPU, and 64 GB of main memory. The
system runs CentOS Linux release 7.2.1511, Linux
kernel version 3.10.0-327.

KNL: A modern manycore shared memory system using
a Intel Xeon Phi 7210 CPU with 64 cores, Processor
base frequency, 32 MB L2 cache (shared among all
cores). The system runs SLES 12 SP2, Linux kernel
version 4.4.38-93.

SuperMUC-WM (multi-node): Up to 20 ‘fat’ nodes
of SuperMUC Phase I (Westmere-EX) hosting four E7-
4870 CPUs, 4× 10 physical cores, 30 MB L3 cache per
CPU, and 256 GB of memory per node. SuperMUC
runs SUSE Linux Enterprise Server 11 SP4, Linux
kernel version 3.0.101-84.

4.2 Comparison on a Multicore and
Manycore System

We first investigate the performance differences between
DASH and the four established parallel programming models
on two different shared memory systems: IBEX and KNL.
The results are shown in Table 2. For Cilk and Chapel it
was not possible to run larger problem sizes because these
approaches delivered segmentation faults or out-of-memory
errors. There was no obvious reason for this problem visible
in the benchmark kernels – no stack or other temporary
user-visible allocation of data structures could be identified
that would causes such a problem. The best performance is
generally delivered by TBB but also Chapel shows good per-
formance numbers in our experiments. For winnow the largest
performance differences of all kernels can be observed. This
has less to do with differences in the programming paradigms,
however and more with different algorithmic implementation
variants. Relatively speaking, TBB and DASH can manage

2https://github.com/dash-project/dash

the transition from the moderately parallel IBEX system to
the manycore KNL system best.

4.3 Scaling Study

Next we investigate the scaling of the DASH implementation
on up to 20 nodes of SuperMUC-HW. Unfortunately, none
of the other approaches can be compared with DASH in this
scenario. Cilk and TBB are naturally restricted to shared
memory systems by their threading-based nature. Go realizes
the CSP (communicating sequential processes) model that
would, in principle, allow for a distributed memory imple-
mentation but since data sharing via pointers is allowed, Go
is restricted to a single shared memory node. Finally, Chapel
targets both shared and distributed memory systems, but
the implementation of the Cowichan problems we use in this
study is not prepared to be used with multiple locales and
cannot make use of multiple nodes (it lacks the dmapped

specificion for data distribution).
The runtime results (in seconds) are shown in Table 3

for two problem sizes, N=40000 and N=70000. A speedup
plot based on this data is shown in Fig. 2. Naturally for the
larger problem size the scaling is better but even the smaller
problem scales well up to 5 nodes (200 cores), afterwards
the communication requirements dominate the smaller and
smaller fraction of computation per core. product and win-
now are the two worst scaling applications due to the high
communication requirements for both.

4.4 Productivity

Finally, we evaluate programmer productivity by analyzing
source code complexity. Table 4 shows the lines of code (LOC)
used in the implementation for each kernel, counting only
lines that are not empty or comments. Of course, LOC is
a very crude approximation for source code complexity but
few other metrics are universally accepted or available for
different programming languages. LOC at least gives a rough
idea for source code size, and, as a proxy, development time,
likelihood for programming errors and productivity. For most
kernels, DASH manages to achieve a remarkably low source
code size. Keep in mind that of all listed approaches DASH
is the only one able to scale beyond a single shared mem-
ory node. As a consequence DASH has to take care of data
distribution and locality, which is no concern for the other ap-
proaches. The reason why DASH still manages to keep a very
compact source code size lies in the high-level abstractions
offered. First, DASH offers multidimensional array as fun-
damental data containers and doesn’t require the developer
to perform manual offset calculations. Second, DASH offers
algorithmic building blocks that allow developers to easily
express operations that would otherwise be cumbersome in a
distributed memory setting.

5 RELATED WORK

C++ libraries implementing the PGAS model for parallel
programming similar to DASH are subject to extensive re-
search, in projects such as UPC++[24], Hierarchically Tiled

https://github.com/dash-project/dash

HPC Asia 2018 WS, January 31, 2018, Chiyoda, Tokyo, JapanKarl Fürlinger, Roger Kowalewski, Tobias Fuchs and Benedikt Lehmann

Table 2: Performance results (in seconds runtime) comparing our implementation of the Cowichan problems
with existing solutions in go, Chapel, TBB, Cilk on IBEX and KNL with two different problem sizes (N=40000
and N=60000). oom=out of memory.

IBEX, 12 cores, N=40000 IBEX, 12 cores, N=60000
DASH go Chapel TBB Cilk DASH go Chapel TBB Cilk

randmat 0.67 0.68 0.40 0.53 0.56 1.19 1.40 oom 1.13 oom
thresh 0.89 0.99 0.73 2.16 0.89 2.02 2.45 oom 4.73 oom
winnow 7.60 156.84 196.47 2.04 0.84 15.74 392.20 oom 4.58 oom
outer 1.15 1.58 0.82 0.67 0.87 2.58 3.65 oom 1.70 oom
product 0.35 0.50 0.19 0.29 0.28 0.77 1.01 oom 0.59 oom

KNL, 64 cores, N=40000 KNL, 64 cores, N=60000
DASH go Chapel TBB Cilk DASH go Chapel TBB Cilk

randmat 1.54 2.10 0.45 0.516 oom 3.57 3.47 oom 1.10 oom
thresh 0.73 2.73 0.76 1.441 oom 1.67 4.51 oom 2.96 oom
winnow 12.12 782.37 536.76 1.003 oom 27.84 1836.45 oom 2.15 oom
outer 3.99 2.52 1.49 0.865 oom 8.83 6.04 oom 1.94 oom
product 2.34 0.32 0.24 0.262 oom 5.26 0.72 oom 0.59 oom

Table 3: Strong scaling study (runtime in seconds) of the DASH implementation of the Cowichan problems
on up to 800 cores of SuperMUC-WM.

SuperMUC-WM, N=40000 SuperMUC-WM, N=70000
nodes/cores→ 1/40 2/80 5/200 10/400 20/800 1/40 2/80 5/200 10/400 20/800
randmat 0.175 0.087 0.044 0.023 0.014 0.683 0.342 0.142 0.075 0.044
thresh 0.290 0.152 0.070 0.053 0.044 1.111 0.569 0.241 0.135 0.093
winnow 4.826 2.647 1.662 2.310 7.550 13.630 7.130 3.943 4.458 9.990
outer 4.413 2.661 0.887 0.677 0.813 15.842 8.125 4.263 2.038 1.891
product 2.624 1.759 0.763 0.664 0.836 10.505 8.762 2.882 2.627 1.797

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14 16 18 20

S
p

e
e
d

u
p

Number of Nodes (x40 Cores)

N=40000
randmat

thresh
winnow

outer
product

Ideal Scaling

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14 16 18 20

S
p

e
e
d

u
p

Number of Nodes (x40 Cores)

N=70000
randmat

thresh
winnow

outer
product

Ideal Scaling

Figure 2: Strong scaling study of the DASH implementation of the Cowichan problems on SuperMUC-WM.
Two problem sizes are tested (N=40000 and N=70000) on up to 800 cores (20 nodes).

Arrays [2], C++ Coarrays, STAPL [4], Charm++ [11], and
HPX [10].

UPC++ implements a PGAS language model and, sim-
ilar to the array concept in DASH, offers local views for
distributed arrays for rectangular index domains [12]. The
UPC++ array library provides a multidimensional array [24],
however it currently does not allow the distribution of array

elements over multiple processes. In addition, the array ab-
straction of UPC++ is not compatible with concepts defined
in the C++ Standard Template Library (STL) and existing
algorithms designed for C++ standard library containers
cannot directly be applied to UPC++ arrays.

The Global Arrays (GA) toolkit [18] is dedicated to dis-
tributed arrays. Its programming interface is very low-level

Investigating the Performance and Productivity of DASH Using the Cowichan ProblemsHPC Asia 2018 WS, January 31, 2018, Chiyoda, Tokyo, Japan

Table 4: Lines-of-code (LOC) measure for each ker-
nel and programming approach, counting non-empty
and non-comment lines only.

DASH go Chapel TBB Cilk

randmat 18 29 14 15 12
thresh 31 63 30 56 52
winnow 67 94 31 74 78
outer 23 38 15 19 15
product 19 27 11 14 10

compared to the DASH solution. The HPX runtime system re-
alizes a language model in C++ that is comparable to PGAS
and also shares many design principles with DASH. It does,
however, presently not provide support for multidimensional
data.

Another approach to PGAS models is followed by Xcal-
ableMP (XMP), which is a directives-based language exten-
sion for Fortran and C/C++ [13]. The productivity of XMP
has been evaluated on the HPC challenge benchmarks with
very good results [16].

Our work presented here directly builds upon the study
of Nanz et al. [17], who have investigated the implementa-
tion of a subset of the Cowichan problems in Cilk, TBB,
Chapel and Go. Their objective was to determine the us-
ability and performance potential of these relatively new
multicore programming approaches based on development
time, source code size, scalability and raw performance. Their
study includes source code variants developed by a novice
which were improved upon by high-ranking experts for each
programming system (including the creators and technical
leads for Chapel and TBB). This expert-parallel version of
the implementation was the basis for our comparisons. The
results of their study indicate that Chapel was always by far
the most concise language used, however performance was
consistently worse by almost an order of magnitude. TBB
was the approach with the fastest development time and
TBB and Cilk generally delivered the best performance.

Investigating the usability and productivity of parallel pro-
gramming systems remains a challenging topic. The overview
publications by Marowka et al. [14] and Sadowski et al. [21]
provide a good introduction to the state of the art and the
difficulties involved. Numerous issues such as the selection of
the human subjects (programmers), the platforms, and the
problem sets make it difficult to derive meaningful conclu-
sions.

The Cowichan problems were specifically developed to en-
able the determination of usability of parallel programming
approaches and they exist in two variants. The first vari-
ant [22] describes seven medium-sized problems exhibiting
data and task parallelism as well as regular and irregular
communication patterns mimicking real applications. The
second variant [23] are 13 smaller ‘toy’ problems that are
meant to be quick to implement individually and composable.
By combining the problems a wide range of parallel opera-
tions are exercises. The study of Nanz et al. and our own

work use five problems from the second set of the Cowichan
problems.

The work of Paudel et al. [19] and Anvik et al. [1] imple-
ment a subset of the first type of Cowichan problems in X10
and CO2P3S, respectively. The authors use the problems to
investigate the expressiveness of the respective programming
system but no qualitative or quantitative comparison with
other implementations is made in either study.

6 CONCLUSION

In this paper we have evaluated DASH, a new realization of
the PGAS approach in the form of a C++ template library
by comparing our implementation of the Cowichan prob-
lems with those developed by expert programmers in Cilk,
TBB, Chapel, and Go. We show that DASH achieves both
remarkable performance and productivity that is comparable
with established shared memory programming approaches.
DASH is also the only approach in our study where the same
source code can be used both on shared memory systems
and on scalable distributed memory systems. This step, from
shared memory to distributed memory systems is often the
most difficult for parallel programmers because it frequently
goes hand in hand with a re-structuring of the entire data
distribution layout of the application. With DASH the same
application can seamlessly scale from a single shared memory
node to multiple interconnecting nodes.

Future work is planned in several areas. First, a larger set
of benchmark kernels and implementation alternatives would
allow for a more thorough and compassing comparison of the
various programming approaches. Concretely we plan to de-
velop implementations of the Cowichan problems in OpenMP
and MPI to establish baseline performance and productivity
numbers using these widely used industry standards. Second,
our current implementation of the Cowichan problems does
not yet utilize the full potential of more advanced features
offered by DASH (such as asynchronous communication) and
we plan to continue using the Cowichan problems as test
applications for the development of DASH.

REFERENCES
[1] John Anvik, Jonathan Schaeffer, Duane Szafron, and Kai Tan.

2005. Asserting the utility of CO2P3S using the Cowichan Problem
Set. J. Parallel and Distrib. Comput. 65, 12 (2005), 1542–1557.

[2] Ganesh Bikshandi, Jia Guo, Daniel Hoeflinger, Gheorghe Al-
masi, Basilio B Fraguela, Maŕıa J Garzarán, David Padua, and
Christoph Von Praun. 2006. Programming for parallelism and
locality with hierarchically tiled arrays. In Proceedings of the
eleventh ACM SIGPLAN symposium on Principles and practice
of parallel programming. ACM, 48–57.

[3] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul,
Charles E Leiserson, Keith H Randall, and Yuli Zhou. 1995. Cilk:
An efficient multithreaded runtime system. Vol. 30. ACM.

[4] Antal Buss, Ioannis Papadopoulos, Olga Pearce, Timmie Smith,
Gabriel Tanase, Nathan Thomas, Xiabing Xu, Mauro Bianco,
Nancy M Amato, Lawrence Rauchwerger, et al. 2010. STAPL:
standard template adaptive parallel library. In Proceedings of the
3rd Annual Haifa Experimental Systems Conference. ACM, 14.

[5] Bradford L Chamberlain, David Callahan, and Hans P Zima. 2007.
Parallel programmability and the Chapel language. The Inter-
national Journal of High Performance Computing Applications
21, 3 (2007), 291–312.

HPC Asia 2018 WS, January 31, 2018, Chiyoda, Tokyo, JapanKarl Fürlinger, Roger Kowalewski, Tobias Fuchs and Benedikt Lehmann

[6] Alan A.A. Donovan and Brian W. Kernighan. 2015. The Go
Programming Language (1st ed.). Addison-Wesley Professional.

[7] Tarek El-Ghazawi and Lauren Smith. 2006. UPC: Unified Par-
allel C. In Proceedings of the 2006 ACM/IEEE conference on
Supercomputing. ACM, 27.

[8] Karl Fürlinger, Tobias Fuchs, and Roger Kowalewski. 2016. DASH:
A C++ PGAS Library for Distributed Data Structures and
Parallel Algorithms. In Proceedings of the 18th IEEE Inter-
national Conference on High Performance Computing and
Communications (HPCC 2016). Sydney, Australia, 983–990.
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0140

[9] Torsten Hoefler, James Dinan, Rajeev Thakur, Brian Barrett, Pa-
van Balaji, William Gropp, and Keith Underwood. 2015. Remote
memory access programming in MPI-3. ACM Transactions on
Parallel Computing 2, 2 (2015), 9.

[10] Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian
Serio, and Dietmar Fey. 2014. HPX: A task based programming
model in a global address space. In Proceedings of the 8th In-
ternational Conference on Partitioned Global Address Space
Programming Models. ACM, 6.

[11] Laxmikant V Kale and Sanjeev Krishnan. 1993. CHARM++:
a portable concurrent object oriented system based on C++.
Vol. 28. ACM.

[12] Amir Kamil, Yili Zheng, and Katherine Yelick. 2014. A local-view
array library for partitioned global address space C++ programs.
In Proceedings of ACM SIGPLAN International Workshop on
Libraries, Languages, and Compilers for Array Programming.
ACM, 26.

[13] J. Lee and M. Sato. 2010. Implementation and Performance
Evaluation of XcalableMP: A Parallel Programming Language
for Distributed Memory Systems. In 2010 39th International
Conference on Parallel Processing Workshops. https://doi.org/
10.1109/ICPPW.2010.62

[14] Ami Marowka. 2013. Towards Standardization of Measuring the
Usability of Parallel Languages. In International Conference on
Parallel Processing and Applied Mathematics. Springer, 65–74.

[15] MPI Forum. 2012. MPI: A message-passing interface standard.
Version 3.0. (Nov. 2012).

[16] Masahiro Nakao, Jinpil Lee, Taisuke Boku, and Mitsuhisa Sato.
2012. Productivity and performance of global-view programming
with XcalableMP PGAS language. In Proceedings of the 2012
12th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (ccgrid 2012). IEEE Computer Society,
402–409.

[17] Sebastian Nanz, Scott West, Kaue Soares Da Silveira, and
Bertrand Meyer. 2013. Benchmarking usability and performance
of multicore languages. In Empirical Software Engineering and
Measurement, 2013 ACM/IEEE International Symposium on.
IEEE, 183–192.

[18] Jaroslaw Nieplocha, Robert J Harrison, and Richard J Littlefield.
1994. Global Arrays: a portable shared-memory programming
model for distributed memory computers. In Proceedings of the
1994 ACM/IEEE conference on Supercomputing. 340–349.

[19] Jeeva Paudel and José Nelson Amaral. 2011. Using the Cowichan
problems to investigate the programmability of X10 program-
ming system. In Proceedings of the 2011 ACM SIGPLAN X10
Workshop. ACM, 4.

[20] James Reinders. 2007. Intel threading building blocks: outfitting
C++ for multi-core processor parallelism. ” O’Reilly Media,
Inc.”.

[21] Caitlin Sadowski and Andrew Shewmaker. 2010. The last mile: par-
allel programming and usability. In Proceedings of the FSE/SDP
workshop on Future of software engineering research. ACM,
309–314.

[22] Gregory V Wilson. 1994. Assessing the usability of parallel pro-
gramming systems: The Cowichan problems. In Programming En-
vironments for Massively Parallel Distributed Systems. Springer,
183–193.

[23] Gregory V Wilson and R Bruce Irvin. 1995. Assessing and com-
paring the usability of parallel programming systems. University
of Toronto. Computer Systems Research Institute.

[24] Yili Zheng, Amir Kamil, Michael B Driscoll, Hongzhang Shan,
and Katherine Yelick. 2014. UPC++: a PGAS extension for C++.
In Parallel and Distributed Processing Symposium, 2014 IEEE
28th International. IEEE, 1105–1114.

[25] Huan Zhou, Yousri Mhedheb, Kamran Idrees, Colin Glass, José
Gracia, Karl Fürlinger, and Jie Tao. 2014. DART-MPI: An MPI-
based Implementation of a PGAS Runtime System. In The 8th

International Conference on Partitioned Global Address Space
Programming Models (PGAS). https://doi.org/10.1145/2676870.
2676875

https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0140
https://doi.org/10.1109/ICPPW.2010.62
https://doi.org/10.1109/ICPPW.2010.62
https://doi.org/10.1145/2676870.2676875
https://doi.org/10.1145/2676870.2676875

	Abstract
	1 Introduction
	2 Background
	2.1 DASH
	2.2 The Cowichan Problems

	3 Implementation Challenges and DASH Features Used
	3.1 Memory Allocation and Data Structure Instantiation
	3.2 Work Sharing
	3.3 Global Max Reduction
	3.4 Parallel Histogramming

	4 Evaluation
	4.1 Platforms
	4.2 Comparison on a Multicore and Manycore System
	4.3 Scaling Study
	4.4 Productivity

	5 Related Work
	6 Conclusion
	References

