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Abstract—We present DASH, a C++ template library that
offers distributed data structures and parallel algorithms and im-
plements a compiler-free PGAS (partitioned global address space)
approach. DASH offers many productivity and performance
features such as global-view data structures, efficient support
for the owner-computes model, flexible multidimensional data
distribution schemes and inter-operability with STL (standard
template library) algorithms. DASH also features a flexible
representation of the parallel target machine and allows the
exploitation of several hierarchically organized levels of locality
through a concept of Teams. We evaluate DASH on a number of
benchmark applications and we port a scientific proxy application
using the MPI two-sided model to DASH. We find that DASH
offers excellent productivity and performance and demonstrate
scalability up to 9800 cores.

I. INTRODUCTION

The PGAS (Partitioned Global Address Space) model is a
promising approach for programming large-scale systems [1],
[2], [3]. When dealing with unpredictable and irregular com-
munication patterns, such as those arising from graph analytics
and data-intensive applications, the PGAS approach is often
better suited and more convenient than two-sided message
passing [4]. The PGAS model can be seen as an extension of
threading-based shared memory programming to distributed
memory systems, most often employing one-sided commu-
nication primitives based on RDMA (remote direct memory
access) mechanisms [5]. Since one-sided communication de-
couples data movement from process synchronization, PGAS
models are also potentially more efficient than classical two-
sided message passing approaches [6].

However, PGAS approaches have so far found only limited
acceptance and adoption in the HPC community [7]. One
reason for this lack of widespread usage is that for PGAS
languages, such as UPC [8], Titanium [9], and Chapel [10],
adopters are usually required to port the whole application to
a new language ecosystem and are then at the mercy of the
compiler developers for continued development and support.
Developing and maintaining production-quality compilers is
challenging and expensive and few organizations can afford
such a long-term project.

Library-based approaches are therefore an increasingly at-
tractive low-risk alternative and in fact some programming
abstractions may be better represented through a library mech-
anism than a language construct (the data distribution patterns

described in Sect III-B are an example). Global Arrays [11]
and OpenSHMEM [12] are two popular examples for compiled
PGAS libraries with a C API, which offer an easy integration
into existing code bases. However, precompiled libraries and
static APIs severely limit the productivity and expressiveness
of programming systems and optimizations are typically re-
stricted to local inlining of routines.

C++, on the other hand, has powerful abstraction mecha-
nisms that allow for generic, expressive, and highly optimized
libraries [13]. With a set of long awaited improvements
incorporated in C++11 [14], the language has recently been
used to implement several new parallel programming systems
in projects such as UPC++ [15], Kokkos [16], and RAJA [17].

In this paper we describe DASH, our own C++ template
library that implements the PGAS model and provides generic
distributed data structures and parallel algorithms. DASH
realizes the PGAS model purely as a C++ template library
and does not require a custom (pre-)compiler infrastructure,
an approach sometimes called compiler-free PGAS. Among
the distinctive features of DASH are its inter-operability
with existing (MPI) applications, which allows the porting of
individual data structures to the PGAS model, and support
for hierarchical locality beyond the usual two-level distinction
between local and remote data.

The rest of this paper is organized as follows. In Sect. II we
provide a high-level overview of DASH, followed by a more
detailed discussion of the library’s abstractions, data structures
and algorithms in Sect. III. In Sect. IV we evaluate DASH on
a number of benchmarks and a scientific proxy application
written in C++. In Sect. V we discuss related work and we
conclude and describe areas for future work in Sect. VI

II. AN OVERVIEW OF DASH

This section provides a high level overview of DASH and
its implementation based on the runtime system DART.

A. DASH and DART

DASH is a C++ template library that is built on top of
DART (the DAsh RunTime), a lightweight PGAS runtime
system implemented in C. The DART interface specifies basic
mechanisms for global memory allocation and addressing
using global pointers, as well as a set of one-sided put and
get operations. The DART interface is designed to abstract



1 #include <libdash.h>
2 #include <iostream >
3 using namespace std;
4
5 int main(int argc , char *argv [])
6 {
7 dash::init(&argc , &argv);
8 // private scalar and array
9 int p; double s[20];

10 // globally shared array of 1000 integers
11 dash::Array <int > a(1000);
12 // initialize array to 0 in parallel
13 dash::fill(a.begin (), a.end(), 0);
14 // global reference to last element
15 dash::GlobRef <int > gref = a[999];
16 if (dash::myid() == 0) {
17 // global pointer to last element
18 dash::GlobPtr <int > gptr = a.end() - 1;
19 (*gptr) = 42;
20 }
21 dash:: barrier ();
22 cout << dash::myid() << " " << gref << endl;
23 cout << dash::myid() << " " << a[0] << endl;
24 dash:: finalize ();
25 }

Fig. 1. A simple stand-alone DASH program illustrating global data struc-
tures, global references, and global pointers.

from a variety of one-sided communication substrates such
as GASPI [18], GASNet [19] and ARMCI [20]. DASH
ships with an MPI-3 RMA (remote memory access) based
implementation of DART called DART-MPI [21] that uses
shared memory communicators to optimize intra-node data
transfer [22]. A single-node implementation utilizing System-
V shared memory has also been developed as proof-of-
concept, and experimental support for GPUs was added in
DART-CUDA [23].

B. Execution Model

DASH follows the SPMD (single program, multiple data)
model with hierarchical additions. In order to liberate termi-
nology from a concrete implementation choice, we refer to
the individual participants in a DASH program as units (cf.
threads in UPC and images in Co-Array Fortran). Units may
be implemented as full operating system processes or realized
as lightweight threads. The total number of units is determined
when the program is launched and stays unchanged throughout
the program’s lifetime. Units are organized into teams that
can be dynamically created and destroyed at runtime. The
sole method to establish a new team is to create a subset of
an existing team starting from dash::Team::All(), the built-in
team representing all units in a program.

In the DASH programming model, teams form the ba-
sis for all collective synchronization, communication, and
memory allocation operations. Constructors for DASH data
structures have an optional Team parameter that defaults to
dash::Team::All(). Since a team represents physical resources
(the set of memory allocations performed by the team mem-
bers and their execution capabilities), dash::Team is imple-
mented as a move-only type that cannot be copied.

Fig. 1 shows a simple stand-alone DASH program. init()
initializes the runtime, finalize() reclaims resources. myid()
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Fig. 2. The interplay of central abstractions in DASH.

is shorthand for dash::Team::All().myid() and returns the
zero-based ID of the calling unit. Similarly, size() returns the
number of participating units. dash::barrier() is shorthand
for dash::Team::All().barrier() and synchronizes all units.

C. Memory Model

DASH implements a private-by-default memory model
where regular C++ variables and STL (standard template
library) containers are private and cannot be accessed by other
units (Fig. 1, line 9). To make data shared and accessible
by other units, the containers provided by DASH (such as
dash::Array and dash::Matrix) are allocated over a team
(line 11). The team members provide the memory and can later
access the shared data via one-sided put and get operations
that are typically triggered automatically in response to higher-
level access operations (see Sect. II-D).

The sources and targets for one-sided put and get operations
are specified in terms of global pointers. A DART global
pointer identifies a location in global shared memory and
consists of a unit ID, a memory segment identifier, and an
offset within this segment. DART global pointers are 16 bytes
in size and can address any 64 bit memory location on up to
232 units. The remaining bits are used for flags or reserved
for future use.

D. Referencing and Accessing Data

When using an STL container, such as std::vector, ac-
cessor functions (.at() and the subscript operator[]) return a
reference to the stored value. C++ references can be thought
of as named aliases, implemented using memory addresses
(i.e., pointers), with additional safety guarantees enforced by
the compiler. Since a DASH container holds elements that
may not reside in a unit’s local memory, data access cannot
happen by C++ reference. Instead, accessor functions return a
global reference proxy object of type GlobRef<T> where T is
the element’s data type.

GlobRef<> mimics C++ references and behaves in the
following way: A GlobRef<T> is implicitly convertible to a
variable of type T. For example, given the definition of gref

in Fig. 1, cout<<gref in line 22 will output 42. Whenever a
conversion of global reference to value type is requested, and
the global reference denotes a remote location, a get operation
is performed and the remote value is fetched. If the location



is local, the value is directly accessed in shared memory.
Conversely, GlobRef<> implements an assignment operator for
objects of type T that performs a put operation of the supplied
value to the global memory location referenced by GlobRef<>.

A global pointer object GlobPtr<T> is a thin wrapper around
the global pointer provided by DART. The main function of
the global pointer is to specify the global memory locations
for one-sided put and get operations. Dereferencing a global
pointer (line 19 in Fig. 1) creates a GlobRef<T> object, thus
(*gptr)=42 sets the value of the last array element to 42.
GlobPtr<> also supports pointer arithmetic and subscripting,
but this only acts on the address part of the global pointer,
while the unit ID remains unchanged. In other words, a global
pointer does not have any phase information associated with it
and cannot be used to iterate over a distributed array directly.
Global iterators are used for that purpose instead. A global
pointer GlobPtr<T> can be converted to a regular pointer (T*)
if the memory is local, otherwise nullptr is returned.

A GlobIter<T> behaves like a random access iterator that
can iterate over a chunk of global memory by keeping an
internal integer index that can be dynamically converted on-
demand to a GlobPtr<T>. To realize this index-to-GlobPtr<>
conversion, the GlobIter<T> constructor takes two arguments:
A GlobMem<T> object that represents a chunk of global memory
and a Pattern object. A Pattern is the DASH approach to
express data distribution and memory layout, more details
about multidimensional patterns is provided in Sect. III-B.

A schematic illustration of the interplay of global pointers,
iterators, and references in shown in Fig. 2. Note, however, that
DASH users don’t usually need to know or care about these
implementation details. Instead, DASH is used with an inter-
face that is familiar to most C++ developers: containers that
offer subscripting and iterator-based access, and algorithms
working on ranges delimited by iterators (Fig. 1, lines 13
and 23).

E. Teams

A Team in DASH is simply an ordered set of units. A new
team is always formed as a subset of an existing team, and thus
a hierarchy from leaf team to the root (dash::Team::All())
is maintained. The simplest operation to create a new team
is team.split(n), which creates n new teams, each with an
approximately equal number of units. Teams are used to
represent hierarchical configurations that arise in the hardware
topology or may come from the algorithmic design of the
application [24]. To reflect the machine topology, an equal-
sized split will generally be inadequate. DASH thus computes
so-called Locality Domain Hierarchies by integrating informa-
tion from a number of sources such as PAPI, hwloc [25] and
the OS. Using this mechanism it is, for example, possible to
split dash::Team::All() into sub-teams representing the shared
memory nodes on the first level and to then perform another
split into sub-teams corresponding to NUMA domains on the
second level. This scheme also supports hardware accelerators
such as GPUs or Xeon Phi cards and DASH allows the

formation of a sub-team that consists of all Xeon-Phi co-
processors allocated to an application run.

These hardware-aware teams can then be used for (static)
load balancing by identifying the hardware capabilities of each
sub-team and adjusting the number of elements accordingly.

III. DATA STRUCTURES AND ALGORITHMS IN DASH

In this section we describe the fundamental data container
offered by dash, the dash::Array. We discuss the flexible data
distribution schemes in one and multiple dimensions and the
algorithms offered by DASH.

A. The DASH Array

The DASH array (dash::Array) is a generic, fixed-size, one-
dimensional container class template, similar in functionality
to the built-in arrays that most programming languages of-
fer (for process-local data) and the UPC shared array (for
distributed data). Once constructed, the size of the array
is fixed and cannot be changed. A dash::Array is always
constructed over a team and all units in the team contribute an
equal amount of memory to hold the array’s data. The team
used for the allocation is specified as an optional constructor
parameter. If no team is explicitly given, the default team,
dash::Team::All() is used. For example:
// globally shared array of 1000 integers
dash::Array <int > arr1 (1000);

dash::Team& t1 = ...; // construct a new team
// arr2 is allocated over team t1
dash::Array <int > arr2 (1000, t1);

The construction of a DASH array is a collective operation.
All units have to call the constructor with the same arguments
and it is an error if different arguments are supplied. Besides
the template parameter that specifies the type of the container
elements, the array constructor takes at least one argument:
the total number of elements in the array (its global size). The
default data distribution scheme used by DASH is BLOCKED,
which means that each unit stores at most one contiguous
block of elements of size Nelements/Nunits rounded up to
the next integer.

Optionally, one of the distribution specifiers BLOCKED,
CYCLIC, BLOCKCYCLIC() can be supplied explicitly, where
CYCLIC is an alias for BLOCKCYCLIC(1). As an example, when
run with four units, the following declarations give rise to the
distribution patterns shown in Fig. 3.
dash::Array <int > arr1 (20); // default: BLOCKED

dash::Array <int > arr2(20, dash:: BLOCKED)
dash::Array <int > arr3(20, dash:: CYCLIC)
dash::Array <int > arr4(20, dash:: BLOCKCYCLIC (3))

Accessing the elements of a dash::Array. There are
various ways in which elements in a DASH array can be
accessed. DASH implements a global-view PGAS approach
in which global data structures are accessed by global indices
and iterators. In other words, the expression a[77] refers
to the same element in the array a, regardless of which
unit evaluates the expression. Global-view programming has
the appealing property that standard sequential algorithms
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Fig. 3. The one-dimensional data distribution patterns supported by DASH.
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Fig. 4. Distributed memory layout for a DASH Array with 14 elements
distributed over four units. The array supports global-view iteration using
begin() and end() as well as local view iteration using lbegin() and lend().

can be used directly with the dash array. For example,
std::sort(a.begin(),a.end()) will employ a standard se-
quential sort algorithm to sort the elements in the dash array.

Global element access is supported by accessor functions
(at() and operator[]()) and through global iterators. Follow-
ing established STL conventions, arr.begin() returns a global
iterator to the first element and arr.end() is an iterator to
one-past-the-last element in the array arr. Thus, dash::Array
works seamlessly with the C++11 range-based for loops, so
for(auto el: arr)cout << el; prints all elements of arr.

For performance reasons it is critically important to take
locality into account when working with data and all PGAS
approaches support an explicit notion of data locality in some
form. DASH adopts the concept of local view proxy objects
to express data locality on the unit level. In addition to this
standard two-level differentiation (local vs. remote) DASH
also support a more general hierarchical locality approach.
This is discussed in more detail in Sect. II-E.

The local proxy object arr.local represents the part of
the array arr that is stored locally on a unit (i.e., the local
view of the array). arr.local.begin() and arr.local.end(),
or alternatively arr.lbegin(), and arr.lend() provide raw
pointers to the underlying storage for maximum performance.
These raw pointers can be used to interface with existing
software package such as mathematical libraries. Note that the
local proxy object does not respect the global element ordering
(as specified by an array’s pattern). local[2] is simply the
third element stored locally and depending on the pattern it
will correspond to a different global element. If this global
information is required, a pointer to the global proxy object
can be converted to a global pointer and to a global iterator.

Fig. 4 illustrates this concept for a distributed array with 14
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elements distributed over four units. Each unit gets a block
of four elements, the last unit’s storage is underfilled with
only two elements. begin() and end() return the same global
iterator for each unit, lbegin() and lend() return unit-local
begin and end iterators, respectively.

B. Working with Multidimensional Data

Besides the one-dimensional array described in Sect. III-A,
DASH also supports efficient and productive work with mul-
tidimensional data by providing the DASH N-dimensional
array (available as dash::NArray and the alias dash::Matrix).
dash::Matrix is a distributed N-dimensional array container
class template. Its constructor requires at least two template
arguments, one for the element type (int, double, etc.) and
one for the dimension (N). The following example creates a
two-dimensional integer matrix with 40 rows and 30 columns
distributed over all units.
dash::Matrix <int , 2> matrix (40, 30); // 1200 elements

Just like the distributed 1D array, dash::Matrix offers ef-
ficient global and local access methods (using coordinates,
linear indices, and iterators) and allows for slicing and ef-
ficient construction of block regions and lower-dimensional
sub-matrix views. Details about the DASH multidimensional
array and a case study implementing linear algebra routines
with performance results rivaling highly tuned linear algebra
packages are presented in a publication under review [26].

As an extension to the one-dimensional case, DASH allows
the specification of multidimensional data distribution patterns.
The distribution specifiers CYCLIC, BLOCKCYCLIC(), BLOCKED, and
NONE can be used in one more dimensions and NONE means
that no distribution is requested in a particular dimension. The
following example creates two 2D patterns, each with 16 ×
10 elements. The resulting pattern (assuming four units) is
visualized in Fig. 5 (left and middle).
dash::Pattern <2> pat1(16, 10, BLOCKED , NONE);
dash::Pattern <2> pat2(16, 10, NONE , BLOCKED);

In addition, DASH supports tiled patterns where elements
are distributed in contiguous blocks of iteration order. Addi-
tionally for any multidimensional pattern the memory layout
(or storage order) can be specified using the ROW_MAJOR or



COL_MAJOR template arguments. If not explicitly specified, the
default is row major storage. Fig 5 (right) shows the following
tiled pattern with column major storage order as an example:

// arrange team in a 2x2 configuration
dash::TeamSpec <2> ts(2,2);

// 4x2 element tiles , column major layout
dash:: TilePattern <2, COL_MAJOR > ⤦

pat3(16, 10, TILE (4), TILE (2), ts);

Note that dash::NArray and dash::Pattern support arbi-
trarily large dimensions (barring compiler limitations when
instantiating the templates) but provide specializations and
optimizations for the common two- and three-dimensional
cases.

C. DASH Algorithms

DASH is first and foremost about data structures, but
data structures by themselves are of limited use. Of course,
developers are interested in running some computation on
the data to achieve results. Often this computation can be
composed of smaller algorithmic building blocks. This concept
is supported elegantly in the STL with its set of iterator-based
standard algorithms (std::sort(), std::fill(), etc.).

DASH generalizes core underlying STL concepts: Data con-
tainers can span the memory of multiple nodes and global iter-
ators can refer to anywhere in this virtual global address space.
It is thus natural to support parallel DASH equivalents for STL
algorithms. An example for this is dash::min_element() which
is passed two global iterators to delineate the range for which
the smallest element is to be found. While conceptually simple,
a manual implementation of min_element for distributed data
can actually be quite tedious, let alone repetitive.

The DASH algorithm building blocks are collective, i.e., all
units that hold data in the supplied range participate in the call.
The algorithms work by first operating locally and then com-
bining results as needed. For min_element the local minimum is
found using std::min_element() and then the global minimum
is determined using a collective communication operation and
finally the result is broadcast to all participating units. The
beauty of the implementation lies in the fact that it will work
in the same way with any arbitrary range in a DASH container,
with any underlying data distribution and not just with simple
data types but with composite data types as well.

The algorithms presently available in DASH include
copy(), copy_async(), all_of(), any_of(), none_of(),
accumulate(), transform(), generate(), fill(), for_each(),
find(), min_elment(), and max_element().

IV. EVALUATION

In this section we evaluate DASH on a number of bench-
marks and perform a study with a scientific C++ MPI proxy
application. The platforms we use in our study are as follows:

a) IBEX: A two-socket shared memory system with Intel
E5-2630Lv2 (Ivy Bridge-EP) CPUs, 12 physical cores total,
15 MB L3 cache per CPU and 64 GB of main memory.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1  10  100  1000  10000  100000  1e+06  1e+07

G
ig

a
 U

p
d

a
te

s 
P
e
r 

S
e
co

n
d

Local Array Size (Bytes)

Performance of Independent Local Updates on IBEX

DASH loc. iterator
DASH loc. subscript

DASH loc. pointer
STL vector
STL deque

Raw C++ Array

Fig. 6. Efficiency of local update operations in DASH using local subscripts,
iterators and pointers, compared to raw array operations and the STL vector
and deque.

b) SuperMUC-HW: Phase II of SuperMUC at the Leib-
niz Supercomputing Centre (LRZ) consisting of 3072 nodes,
each equipped with two E5-2697v3 CPUs (Haswell-EP) with a
total of 28 physical cores per node, 18 MB L3 cache per CPU
and 64 GB of memory per node. The nodes are interconnected
by an Infiniband FDR14 network.

A. Efficient Local Data Access

This micro-benchmark tests how fast data can be accessed
locally. The benchmark allocates a dash::Array of integers and
initializes each element to 0. Then N rounds of updates are
performed, where in each round each element is incremented
by 1. Each unit updates the elements it owns (“owner com-
puters”) and the total rate of updates per second is reported
by the benchmark in GUPS (giga updates per second). Since
data is only accessed locally, communication is not an issue
for this benchmark and we report data for a single node system
(IBEX).

Fig. 6 shows the results achieved for this benchmark. The
horizontal axis shows different local array sizes while the
vertical axis plots the achieved update rate for a number of
DASH access variants and, for comparison, the std::vector

and std::deque container and a raw array (int[local_size]).
For DASH we test access to local data by local subscript
(.local[i]), local iterator, and local pointer. As can be seen
in Fig. 6, the performance of all these access methods closely
matches the performance of the raw array accesses and the
very well performing std::vector case. std::deque shows
much lower performance because this container is not a
optimized for access through the subscript operator.

B. Algorithms and Scalability

In this benchmark we evaluate the performance and scala-
bility of the DASH algorithm dash::min_element().

The chart in Fig. 7 shows the performance of
dash::min_element() on SuperMUC. A dash::Array<int> arr

of varying size is allocated using an increasingly large number
of cores, and dash::min_element(arr.begin(), arr.end())
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is called. I.e., the smallest element in the whole range is
found. The topmost line represents an array of 100 billion
entries (i.e., 400 GB of data) and the algorithm scales
nicely up to 9800 cores (350 nodes) of SuperMUC. At
the largest scale, finding the smallest entry takes about
50 milliseconds. For smaller arrays, the performance is
dominated by communication and larger core counts increase
the runtime.

C. Communication Intensive Applications – NPB DT

The NAS Parallel Benchmarks DT kernel is a communica-
tion intensive benchmark where a data flow has to be processed
in a task graph. While the initial data sets are randomly
generated, the task graphs are quad trees with a binary shuffle.
Depending on the problem size, the data sets fit into the L1-
cache (class S) and grow with higher problem classes. Since
the task graph requires frequent synchronization between the
tasks, the crucial factor is a high communication throughput.
In the DASH implementation, the data sets are placed in a
globally distributed DASH Array which enables to use the
dash::copy_async algorithm for the large data transfers. Due
to the efficient one-sided put operations we achieve up to 24%
better performance on the SuperMUC, compared to the native
MPI implementation:

Class Graph Size Mop/s MPI Mop/s DASH Speedup
A BH 442368 170.80 175.16 1.03
A SH 442368 430.50 486.33 1.13
A WH 442368 313.02 387.47 1.24
B BH 3538944 210.34 215.02 1.02
B SH 3538944 776.38 905.96 1.17
B WH 3538944 463.20 459.91 0.99

D. LULESH

Livermore Unstructured Lagrangian Explicit Shock Hydro-
dynamics (LULESH) is a widely used proxy application for
calculating the Sedov blast problem [27] that highlights the
performance characteristics of unstructured mesh applications.

We ported LULESH v2.0.3 to DASH and perform a com-
parative performance and scalability study. The Livermore
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MPI implementation keeps data (coordinates, velocities, ac-
celerations, etc.) in std::vector containers and uses two-sided
message passing to exchange data along connecting faces,
edges, and corners with up to 26 neighbors in a 3D cube
domain decomposition.

For our DASH port we place all data in globally distributed
3D dash::Matrix containers, arrange units in a 3D cubic
topology and use data distribution scheme that is BLOCKED

in each dimension. For a cubic number of processes this
results in the same decomposition used in the original version
but requires far less application-side code (index calculations,
etc.), since DASH takes care of these details. DASH also has
the advantage that the data distribution is not limited to cubic
number of processes (n3) but any number n ×m × p of units
can be used. We further replaced all two-sided communication
operations in the original version with asynchronous one-
sided put operations (using dash::copy_async) that directly
update the target unit’s memory. Fig. 8 shows the performance
and scalability comparison (using weak scaling) of the two
versions on up to 3375 cores. DASH scales similarly well
as the optimized MPI implementation and offers performance
advantages of up to 9%.

V. RELATED WORK

The majority of scalable HPC applications use the mes-
sage passing programming model in the form of MPI today.
However, several factors will make it problematic to scale
MPI to future extreme scale machines. First, MPI applications
usually require some degree of data replication, which conflicts
with the trend of continually shrinking available memory
per compute core [28]. Second, MPI applications typically
implement a bulk-synchronous execution model and a more
locally synchronized dynamic task-based execution approach
is not easily realized in this model. Third, while MPI forces
the programmer to think about data locality and thus leads to
well performing code, it doesn’t make it easy to work with
data in a productive way – e.g., by providing higher level
data structure abstractions and supporting a global view across
compute nodes.



PGAS approaches make working with data in the above
sense easier. PGAS essentially brings the advantages of
threading-based programming (such as global visibility and
accessibility of data elements) to distributed memory systems
and accounts for the performance characteristics of data ac-
cesses by making the locality properties explicitly available
to the programmer. Traditional PGAS approaches come in the
form of a library (e.g., OpenSHMEM [12], Global Arrays [11])
or language extensions (Unified parallel C, UPC [8], Co-Array
Fortran, CAF [29], [30]). Those solutions usually don’t address
hierarchical locality and offer only a two-level (local/remote)
distinction of access costs. In contrast, DASH offers the
concept of teams that can be used to express hierarchical
organization of machines or algorithms.

Most programming systems also offer only one-dimensional
arrays as their basic data-type out of which more complex
data structures can be constructed – but that work falls on the
individual programmer. More modern PGAS languages such
as Chapel [10] and X10 [31] address hierarchical locality (e.g.,
in the form of locales or hierarchical place trees [32]) but
using these approaches requires a complete re-write of the
application. Given the enormous amounts of legacy software,
complete rewrites of large software packages are unlikely
to happen. In contrast, DASH offers an incremental path to
adoption, where individual data structures can be ported to
DASH while leaving the rest of the application unchanged.

Data structure libraries place the emphasis on providing
data containers and operations acting on them. Kokkos [16]
is a C++ template library that realizes multidimensional ar-
rays with compile-time polymorphic layout. Kokkos is an
efficiency-oriented approach trying to achieve performance
portability across various manycore architectures. While
Kokkos is limited to shared memory nodes and does not
address multi-level machine organization, a somewhat similar
approach is followed by Phalanx [33], which also provides the
ability to work across a whole cluster using GASNet as the
communication backend. Both approaches can target multiple
back-ends for the execution of their kernels, such as OpenMP
for the execution on shared memory hardware and CUDA
for execution on GPU hardware. RAJA [17] and Alpaka [34]
similarly target multiple backends for performance portability
on single shared-memory systems optionally equipped with
accelerators. RAJA, Alpaka and Kokkos are all restricted to a
single compute node while DASH focuses on data structures
that span the memory of many compute nodes.

STAPL [35] is a C++ template library for distributed
data structures supporting a shared view programming model.
STAPL doesn’t appear to offer a global address space ab-
straction and can thus not be considered a bona-fide PGAS
approach but it provides distributed data structure and a task-
based execution model. STAPL offers flexible data distribution
mechanisms that do however require up to three communica-
tion operations involving a directory to identify the home node
of a data item. PGAS approaches in HPC usually forgo the
flexible directory-based locality lookup in favor of a statically
computable location of data items in the global address space

for performance reasons. STAPL appears to be a closed-source
project not available for a general audience.

Recently, C++ has been used as a vehicle for realizing a
PGAS approach in the UPC++ [15] and Co-array C++ [36]
projects. Co-array C++ follows a strict local-view program-
ming approach and is somewhat more restricted than DASH
and UPC++ in the sense that it has no concept of teams to
express local synchronization and communication. While our
previous work on the DASH runtime is based on MPI, UPC++
is based on GASNet. DASH offers support for hierarchical
locality using teams, which are not supported by UPC++
and DASH more closely follows established C++ conventions
by providing global and local iterators. STL algorithms can
thus be applied directly on DASH data containers, which
is not possible in UPC++. DASH also comes with a set of
optimized parallel algorithms akin to those found in the STL
while UPC++ offers no such algorithms. DASH also supports
globalview multidimensional distributed arrays with flexible
data distribution schemes, UPC++ only supports a local view
multidimensional array inspired by Titanium [37].

VI. CONCLUSION AND FUTURE WORK

We have presented DASH, a compiler-free PGAS approach
implemented as a C++ template library. Using one-sided
communication substrates such as MPI-3 RMA, DASH offers
distributed memory data structures that follow established
C++ STL conventions and thus offer an easy adoption path
for C++ developers. DASH can be integrated into existing
applications by porting individual data structures at a time.
DASH simplifies working with multidimensional data by pro-
viding a multidimensional array abstraction with flexible data
distribution schemes. DASH also accounts for increasingly
complex machine topologies by providing a Team concept that
can be used to express hierarchical locality. Our experimental
evaluation has shown that DASH scales well and is able to
outperform classic two-sided MPI applications.

DASH is free open-source software, released under a BSD
license and is under active development. The current version
of the library can be downloaded from the project’s webpage
at http://www.dash-project.org.

Further developments for DASH are planned in several
directions. First, work is under way to support dynamically
growing and shrinking containers. While classical HPC ap-
plications can typically be well supported by the fixed-size
containers currently implemented in DASH, data analytics
applications and HPC use cases in less traditional areas such
as computational biology often require these more complex
data structures. Second, DASH focuses on data-structures and
provides efficient support for the owner-computes model but
it doesn’t currently offer a way to apply computation actions
to data elements in a more general way. Work towards this
functionality is planned by implementing a general task-based
execution model in the runtime and the C++ template library.
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