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Abstract. DASH is a realization of the PGAS (partitioned global ad-
dress space) model in the form of a C++ template library. Operator
overloading is used to provide global-view PGAS semantics without the
need for a custom PGAS (pre-)compiler. The DASH library is imple-
mented on top of our runtime system DART, which provides an abstrac-
tion layer on top of existing one-sided communication substrates. DART
contains methods to allocate memory in the global address space as well
as collective and one-sided communication primitives. To support the de-
velopment of applications that exploit a hierarchical organization, either
on the algorithmic or on the hardware level, DASH features the notion
of teams that are arranged in a hierarchy. Based on a team hierarchy, the
DASH data structures support locality iterators as a generalization of the
conventional local/global distinction found in many PGAS approaches.

1 Introduction

High performance computing systems are getting bigger and bigger in terms of
the number of cores they are composed of and the degree of parallelism that
needs to be exploited to successfully use them is becoming higher and higher.
Billion-way parallelism is envisioned for Exascale-class machines [22] and one
of the consequences of this trend is that data movement is becoming a more
significant contributor to computing cost (in terms of time and energy) than the
arithmetic operations performed on the data [8].

At the same time, while data comes to the fore in many areas of science,
technology, and industry in the form of data-intensive science and big data, the
programming models in use today are still largely compute-centric and do not
support a data-centric viewpoint well. Consequently, programming parallel sys-
tems is difficult and will only get more complex as the Exascale era approaches.



PGAS (partitioned global address space) languages have long been proposed as
a solution to simplifying the process of developing parallel software, but tradi-
tional PGAS solutions are ill equipped to address the two trends outlined above.
First, most PGAS approaches offer only the differentiation between local and
global data, a more fine-grained differentiation that corresponds to hierarchical
machine models often envisioned for Exascale computing is not straightforward.
Second, many existing PGAS solutions only offer basic data structures of built-
in data types such as one-dimensional arrays and users have to develop more
complex abstractions from scratch.

To address some of these issues, we are developing DASH, a PGAS approach
that comes in the form of a C++ template library, supports hierarchical locality,
and focuses on data structures and programmer productivity. The rest of this
paper gives an overview of the project and its current status and is organized as
follows: In Sect. 2 we start with the discussion of the high-level layered structure
of our project. Sect. 3 describes the foundation of the project, the DART runtime
layer and its interface to the C++ template library, in some detail. In Sect. 4 we
describe how the abstractions of DASH can be used by an application developer.
In Sect. 5 we discuss research projects that are related to DASH and in Sect. 6 we
summarize the current status and discuss the further direction for our project.

2 An Overview of DASH

DASH [9] is a data-structure oriented C++ template library under development
in the context of SPPEXA [23], the priority program for software for Exas-
cale computing funded by the German research foundation (DFG). The DASH
project consortium consists of four German partner institutions (LMU Munich,
KIT Karlsruhe, HLRS Stuttgart, and TU Dresden) and an associated partner
at CEODE in Beijing, China. The layered structure of the project is shown in
Fig. 1; each project partner is leading the efforts for one of the layers.

A DASH-enabled application makes use of the data structures, algorithms,
and additional abstractions (such as the hierarchical team construct) that are
provided in the form of a C++ template library. DASH relies on a one-sided
communication mechanism to exchange data, residing in the memory of multi-
ple separate nodes, in the background, while providing the programmer with a
convenient, local view.

As an example, Fig. 2 shows a simple stand-alone hello world DASH pro-
gramme that allocates a small 1D array of integer keys and stores them over
all available nodes. DASH follows the SPMD (single program, multiple data)
model and the execution environment is initialized by the dash::init() call
in line 3. Subsequently, size gives the number of participants in the program
(denoted units) and myid identifies an individual unit. As an extra benefit of
using DASH, rather than a local container such as an STL vector or array, the
storage space is not limited by the locally available memory, but is extensible
by adding more resources in a distributed memory setting. In the example code
(Fig. 2), the DASH array allocated in line 8 is used to communicate a single in-
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Fig. 1. The layered structure of the DASH project.

teger key from unit 0 to every other unit in the application. The communication
is accomplished by overloading the subscript ([]) operator of the dash::array

container and in lines 11–13 unit 0 stores the key at every (distributed) memory
location of the array. The default layout for DASH one-dimensional arrays is
blocks of elements over the available units. In our example this mapping implies
that key[i] is stored on unit i and hence the access in line 18 (key[myid]) does
not generate a communication event, since every unit reads its own local data
item.

DASH builds upon existing one-sided communication substrates. A variety of
one-sided communication solutions such as GASNet [4], ARMCI [18], OpenSH-
MEM [21], GASPI [12], and MPI exist, each with various features, restrictions
and levels of maturity. DART (the DASH runtime), aims at abstracting away
the specifics of a given substrate and provides services to the upper levels of
the DASH stack. Most importantly, global memory allocation and referencing,
as well as one-sided puts and gets, are provided by DART. In principle, any
communication substrate can form the basis for DASH. However, since inter-
operability with existing MPI applications is among our design considerations,
we chose MPI-3 one-sided (RMA, remote memory access) operations as the foun-
dation for our scalable runtime implementation.

A DASH-enabled application can use the data structures and programming
mechanisms provided by DASH. An application can be written from scratch
using DASH, but we envision that more commonly existing applications will be
ported to DASH, one data-structure at a time. In our project, two application
case studies guide the development of the features of DASH. One application is
a remote sensing Geoscience application from CEODE (China), the other is a
molecular applications code contributed by HLRS Stuttgart. Finally, the tools
and interfaces layer in Fig. 1 encompasses the integration of parallel I/O directly



to and from the data structures as well as the inclusion of a tools interface to
facilitate debugging and performance analysis of DASH programs.

1#include <libdash.h>

2
3int main(int argc , char* argv []) {

4dash::init(&argc , &argv);

5
6int myid = dash::myid();

7int size = dash::size();

8
9dash::array <int > key(size);

10
11if(myid ==0) {

12for(i=0; i<size; i++) key[i]= compute_key (...);

13}

14
15dash:: barrier ();

16
17cout <<"Hello from unit "<<myid <<" of "

18<<size <<" my key is"<<key[myid]<<endl;

19
20dash:: finalize ();

21}

Fig. 2. A hello world stand-alone DASH program that makes use of a small, shared
1D array for passing an integer key from unit 0 to all units in the program.

3 DART: The DASH Runtime Layer

DART is a plain-C based runtime that defines and implements central abstrac-
tions governing the development and usage of the DASH library and DASH
applications. This section describes some of the key concepts that have been in-
cluded in the first realization (v1.0) of the DART interface. In this first iteration
of the interface we have been intentionally conservative and have limited our-
selves to the necessities required to implement a functional version of the DASH
library. A future iteration of the DART interface is likely to relax some of the
restrictions and allow for a more expressive execution model. Specifically, DART
v1.0 does not contain a tasking or explicit code execution model. Instead, data
can be transparently accessed and computed on by regular operating system
threads. Work is currently in progress to identify the requirements for extending
DART to GPUs and in the context of this work a DART task execution model
will be developed.



In the DART execution model, the individual participants of a DASH/DART
program are called units. The generic name unit was chosen because other related
terms such as process or thread already have a specific meaning in a variety of
contexts and with DART we would like to have the conceptual freedom to map a
unit onto any operating or runtime system concept that fits our requirements. A
DASH application follows the SPMD programming model and the total number
of units that exist is fixed at program start and does not change in the course of
the program execution. Units are organized into teams and one team is referred
to as DART TEAM ALL, comprising all existing units. Every unit in a team has an
integer identifier (ID) which remains unchanged throughout the lifetime of the
team; a unit’s ID with respect to DART TEAM ALL is referred to as the unit’s global
ID. Like units, teams are identified by integer IDs, but teams can be created and
destroyed dynamically. A unit’s ID with in a team other than DART TEAM ALL is
referred to as a local id.

A new team in DART is formed by specifying a subset of an existing parent
team. The team creation routine dart team create() is a collective operation
on the parent team and returns an integer identifier for the new team. Since we
want to support large hierarchical machines and a localized sub-team creation
that requires the involvement of the whole application would be prohibitively
expensive, the new team ID does not have to be globally unique. However, the
following localized uniqueness guarantees are provided:

– The same team ID is returned to all units that are members of the new team.
– The team ID is unique with respect to the parent team.
– If a unit is participating in two teams, t1 and t2, then it is guaranteed that

t1 and t2 will receive different identifiers.

Teams are a mechanism for representing the hierarchical structure of algo-
rithms and machines in a program [16]. An example for a team hierarchy repre-
senting the machine hierarchy of a system like SuperMUC (which has the notion
of interconnected islands [24]) is shown in Fig. 3. Clearly it is not desirable for
every team creation operation to require global synchronization – creating the
sub-teams of team t1 (island 1) should only involve team t1 and not require any
involvement from the rest of the machine. A straightforward algorithm that we
use in our implementation to guarantee the above requirements, while avoid-
ing global communication, keeps a unit-local next team id counter and performs
a maximum reduction among all members of the parent team. After creating
the new team, the next team id counter on all units of the new team is set to
max + 1.

An important abstraction provided by DART is the virtual global memory
space and a mechanism to refer to data items residing in it (i.e., a global pointer).
A DART global pointer is a structure of 128 bits which has a 32 bit field for
identifying the unit providing the memory, a 64 bit offset or local address field
and 32 bits for flags and a segment identifier. Importantly, the global pointer
on the DART level has no phase information associated with it. However, a
similar construct is provided on the C++ (DASH) level, which then does contain
appropriate phase information needed to decide when to switch between units.
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Fig. 3. An example team hierarchy for an execution of an application on a machine
like SuperMUC, with a hierarchical interconnect architecture.

The DART virtual global memory space is composed of the memory segments
contributed by the units of an application on demand. Visibility of and acces-
sibility to memory is based on the team concept. The team-collective operation
dart team memalloc aligned(t, nbytes) allocates nbytes in the memory of ev-
ery unit in team t. This memory is accessible only by the members of team t and
is said to be team-aligned and symmetric. Symmetric refers to the property that
all units allocate the same amount of memory, while team-aligned denotes that
every unit can compute the global pointer to any location in the global memory
by simple arithmetic. A second memory allocation function supported in DART
is dart memalloc, which allocates a “local global” memory that is accessible by
any unit (the memory has implicit associativity with DART TEAM ALL), but the
call is local. The two memory allocation functions are depicted in Fig. 4.

Unit 0 Unit 1 Unit 2 Unit n-1-1

Team 1

Private
Memory

Global
Memory

Global
Pointer

Local-Global 
Allocation

Symmetric and
Team-aligned 
Allocation

Fig. 4. The two types of memory allocation functions supported by DART.



4 Using DASH in Applications

The overall goal of DASH is to provide a programmer with data structures that
can be used productively on large, parallel machines. C++ was chosen as a
host language for our project, because it is used in an increasingly large number
of HPC and data-science applications [27] and it has powerful features that
allow us to realize PGAS semantics efficiently. Specifically, we use templates
to provide efficient implementations of containers for user defined types and
operator overloading, thus achieving a PGAS abstraction without relying on a
custom compiler.

Applications can be written from scratch using DASH and existing applica-
tions can furthermore be adapted to use DASH data structures. A stand-alone
application is shown in Fig. 2.

PGAS approaches are often classified into local-view and global-view solu-
tions, where global-view describes a situation in which the programming entities
are global objects and it is not syntactically obvious, whether accessed data
is local or remote. In local-view approaches, this syntactic visibility is always
guaranteed, often in the form of an explicit co-index that explicitly states the
location of data. Since this distinction is important for performance and energy
efficiency, there is always some way of telling whether data is remote or local
(say, by computing an affinity expression), but global-view does not force this
differentiation to be syntactic.

With DASH we largely follow the global-view approach. The constructors
of our data containers are collective operations on a team and every partici-
pating unit receives an object representing the entire data structure. In several
cases, this global-view approach allows us to use a DASH container (instead of
a standard STL container) in a straightforward manner. An example is shown
in Fig. 5. A 1D array, stored over several units, is used in combination with the
standard library’s sort algorithm in line 11. Naturally, this approach has several
drawbacks: std::sort() is a sequential sorting procedure that only engages one
unit at a time, resulting in fine-grained communication, as the sorting algorithm
fetches data items to compare with. However, despite these drawbacks, we en-
vision that the ability to seamlessly replace STL with DASH containers can be
useful in some situations for prototyping and removing memory limitations.

Accompanying the DASH data structures, we are investigating algorithms
analogous to those found in the STL to take into account data distribution and
parallelism (i.e., a parallel dash::sort()). Additionally, the standard owner-
computes paradigm is supported by DASH in the form of local iterators (lbegin(),
lend()), as shown in line 17 of Fig. 5. These local iterators allow each unit to
access its local portion of the data and they correspond to the classic two-level
affinity model (local/remote) of PGAS. As a generalization of this concept we are
investigating hierarchical locality iterators by leveraging the hierarchical team
concept in the DASH data containers.



1// split the units into 8 teams (e.g., one per node)

2dash::team nodeteam = dash:: TeamAll.split (8);

3
4// allocate an array over the node team

5dash::array <double > b(100000 , nodeteam);

6
7// use the DASH container in place of an STL container

8// note sequential sort and perf. implications

9int myid=nodeteam.myID();

10if(myid ==0) {

11std::sort(b.begin(), b.end());

12}

13
14// to use containers with standard algorithms in parallel ,

15// local iterators lbegin (), lend() are provided

16// this fills the array in parallel (aka. ‘owner computes ’)

17std::fill(b.lbegin (), b.lend(), 23+ myid);

Fig. 5. A small example that shows teams and DASH containers used with global-view
and local-view semantics.

5 Related Work

A number of realizations of the PGAS concept exist. UPC [26] is an ANSI C
dialect that extends C with the ability to declare shared pointers and data items.
The portable Berkeley UPC implementation relies on GASNet [4] for communi-
cation, while some vendors directly target their own low-level interconnect API.
Co-array Fortran [20, 17] extends the notion of standard Fortran arrays with a
co-index to specify the process holding the array. The molecular dynamics ap-
plication has already been ported to UPC which can be used for performance
comparison with DASH porting in future [14]. The DARPA sponsored HPCS
(High Productivity Computing Systems) languages X10 [7], Fortress [1], and
Chapel [6] followed the PGAS model, of which Chapel remains the most ac-
tively developed and used.

PGAS has been realized in the form of a library in the past. Global Arrays [19]
is an early example of an API for shared memory programming on distributed
memory machines, primarily used in the context of quantum chemistry appli-
cations. GASPI [12] is an effort to standardize an API for PGAS programming
developed by Fraunhofer, it features support for fault tolerance, by supporting
timeouts for all non-local operations. OpenSHMEM [21] is a community effort
to standardize the various dialects of SHMEM, which provides a strongly typed
API for shared memory programming on distributed memory machines.

Recently, C++ has been used as a vehicle for realizing a PGAS approach in
the UPC++ [29] and Co-array C++ [15] projects. While the DASH runtime is
based on MPI, UPC++ is based on GASNet. Porting an existing MPI applica-
tion will therefore be more straightforward using DASH. Co-array C++ follows



a strict local-view programming approach and is somewhat more restricted than
DASH and UPC++ in the sense that it has no concept of teams.

STAPL [5, 13, 25] is a C++ template library for distributed data structures
supporting a “shared view” programming model that shares several goals with
DASH. The library provides a local view on data, while it can be physically
spread over several nodes. The authors of STAPL mention PGAS as related
work, but don’t seem to consider their own work a PGAS solution. STAPL does
provide a large set of data containers and places a lot of emphasis on extensibility
and configurability – it does however not seem to be intended for classic HPC
applications.

Hierarchical computation and data structure layout have been explored in
several approaches before. Sequoia [10, 2] is a programming approach (language,
compiler, and runtime system) for exploiting the memory hierarchy of modern
machines in a portable way. Sequoia provides tasks that are restricted to access
only local memory and the only supported way of communication between tasks
is through parameters passed to tasks and the return values. Thus, a program-
mer expresses an application as a hierarchy of tasks, and this abstract hierarchy
is later mapped to a concrete machine hierarchy. In Sequoia this mapping is
done by the compiler, in Hierarchical Place Trees (HPT) [28] the mapping is
done by the runtime. HPT are an extension to the flat place concept of X10.
Hierarchically Tiled Arrays (HTA) [3, 11] are data structures that enable local-
ity and parallelism of array intensive computations, by using a block-recursive
storage scheme. Several implementations of HTA exist, including one for C++.
Finally, the work of Kamil et al. [16] explores additions and modifications to
the SPDM programming model to support a hierarchical concept of teams. The
DASH concept for hierarchical teams is inspired by his work.

6 Conclusion and Future Work

We have presented an overview of the DASH project. One goal of DASH is to
make the PGAS (partitioned global address space) concept available to a wider
range of application developers. PGAS languages often suffer from limited ac-
ceptance, because existing applications have to be ported to the new language as
a whole. With DASH we offer a way to port C++ MPI applications incremen-
tally (one data structure at a time). DASH has the advantage that it is not a
new language to learn and does not require a custom compiler or pre-processor.
Instead, DASH is realized as a C++ template library and operator overloading
is used to provide the PGAS semantics on the data containers.

As high performance computing machines are getting bigger and more hier-
archical on the way to Exascale, we plan to exploit the flexibility of the library-
based approach DASH to address this trend and include support for hierarchical
locality in our data structures. To this end, we are supporting the concept of hi-
erarchical teams. Teams determine visibility and accessibility of the DASH data
structures and allow for the realization of hierarchical locality iterators.



We are presently in the process of putting together a first public release of
our DASH software stack. This first release will contain a generic 1D distributed
array as the basic data structure, and it will be based on the first realization
of our MPI-based DART runtime. The next steps for the projects will be to
include additional data structures, such as multi-dimensional arrays, and dis-
tributed lists. We will continue our work on flexible data layout mappings and
explore concepts to support hierarchical locality. With these data structures and
concepts in place, work on the DASH-enabled molecular dynamics and remote
sensing applications can proceed and thereby guide the next iteration of DASH
features.
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