
Comprehensive Performance Monitoring for GPU Cluster Systems

Karl Fürlinger
Ludwig-Maximilians-Universität (LMU) Munich

Computer Science Department, MNM Team
Oettingenstr. 67, 80538 Munich, Germany

Email: fuerling@nm.ifi.lmu.de

Nicholas J. Wright and David Skinner
NERSC

Lawrence Berkeley National Laboratory
Berkeley, California 94720, USA

Email: {njwright, deskinner}@lbl.gov

Abstract—Accelerating applications with GPUs has recently
garnered a lot of interest from the scientific computing commu-
nity. While tools for optimizing individual kernels are readily
available, there is a lack of support for the specific needs of the
HPC area. Most importantly, integration with existing parallel
programming models (MPI and threading) and scalability to
the full size of the machine are required. To address these
issues we present our work on monitoring and performance
evaluation of the CUDA runtime environment in the context
of our scalable and efficient profiling tool IPM. We derive
metrics for GPU utilization and identify missed opportunities
for GPU-CPU overlap. We evaluate the monitoring accuracy
and overheads of our approach and apply it to a full scientific
application.

Keywords-performance monitoring and analysis; GPGPU
computing; NVIDIA CUDA; GPU clusters; efficient scalable
monitoring

I. INTRODUCTION

Heterogeneous and accelerator-based systems are gaining
a lot of momentum in the high performance computing
area. The addition of ECC protection for device memory
and a significant boost in double precision floating point
performance has rendered NVIDIA graphics cards an at-
tractive building block for supercomputers. As of December
2010 the world’s fastest computer according to the Top 500
list (the Chinese Tianhe-1A system) as well as numerous
smaller clusters are equipped with GPUs. Future massively
parallel leadership-class systems in the multi-Petaflop range
are likely to come with accelerators as well [1].

However, the optimal choice of programming model for
heterogeneous accelerator-based systems is quite far from
being determined. A developer has several ways to offload
all or a portion of their application onto the accelerator.
The options range from leveraging accelerated libraries
(like CUBLAS, CUFFT, CULA [2], MAGMA [3]), dec-
orating kernels with accelerator pragmas and relying on
an accelerator-aware compilation tool-chain (e.g., PGI [4],
[5], HMPP [6]), to the manual implementations of kernels
specifically tuned for the accelerator, in either CUDA or
OpenCL. All of these scenarios require the developer to
have solid performance feedback in order to assess tuning
opportunities and direct optimization strategies.

In this paper we describe our work on providing a com-
prehensive performance monitoring solution for applications
executed on GPU clusters in the context of our performance
monitoring and analysis tool IPM [7], [8]. We focus on
CUDA as we see this framework currently having the most
momentum. Our goal is to enable developers who design,
adapt, or port their parallel codes to GPU clusters to get
feedback from execution at the full scale of machines.
Notably, we argue that optimization of individual kernels for
a single workstation will not be sufficient for the effective
use of accelerators in an HPC setting. We believe that
monitoring at the full scale of machines is needed and
that the interplay of various levels of parallelism (MPI,
OpenMP) and other performance-influencing factors needs
to be accounted for as well.

Here is a list of some of the issues that a programmer has
to address to create a well-performing MPI+CUDA parallel
application for GPU clusters

1) Each kernel needs to be optimized for the GPU
individually.

2) The scheduling and interaction of multiple kernels has
to be analyzed.

3) The load balancing across the MPI processes needs
to be checked. As the number of MPI processes
increases, the fraction of time spent in computation
typically decreases and the MPI communication time
increases. A smaller dataset for GPU offloading can
also mean that the time to transfer data via the PCIe
bus in relation to the GPU compute time changes, and
offloading might become less beneficial.

4) While in the sequential case, GPU activity can only
be overlapped with other CPU compute activities or
file-I/O, in a parallel setting MPI communication with
other processes is an additional option.

5) GPU cluster configurations vary widely. In some in-
stallations, a single GPU is paired with one or several
multi-core CPUs and multiple MPI tasks might have
to share the single GPU. In other scenarios a GPU can
be exclusive to an MPI task. In the shared GPU case,
the kernel performance might be dramatically different
in the production MPI case compared to an isolated

workstation setting.
6) There are more factors beyond the immediate control

of a developer on large-scale machines. The overall
system load, file-system activity, background daemons
and stray processes are impossible to predict but
influence the application execution. Therefore, the
application has to be measured on the actual machine
to explain performance and scaling behavior and factor
out various influencing factors.

Some of these issues, such as (1) and (2) can be addressed
with existing tools such as the CUDA profiler or Parallel
Nsight. Others such as (3)–(6) can only be analyzed when
the parallel application as a whole is taken into account,
which is the focus of our work.

The main contributions of this article are as follows:
• We describe an effective monitoring solution for

CUDA, entirely implemented as a thin layer interposed
between the application and the CUDA runtime. No
source code changes, recompilation, or even re-linking
of the application is required.

• We show how basic host-side timing can be extended
to uncover kernel execution time on the GPU and we
define a metric of implicit host blocking time to identify
opportunities for overlapped execution.

• We provide a monitoring layer for accelerated numer-
ical libraries (BLAS and FFT), to allow developers
that try to leverage accelerators through re-linking with
optimized libraries to obtain performance information.

The rest of this paper is organized in the following way:
To set the stage we give a short overview of our existing IPM
(integrated performance monitoring) tool set in Section II.
Then, Section III describes our monitoring methodology for
CUDA in detail. Our approach is based on intercepting
the runtime library calls and we show through a series
of examples how basic host (CPU) side timing can be
augmented to derive valuable metrics about GPU utilization
and GPU-CPU interactions. In Section IV we evaluate our
approach with respect to monitoring fidelity and overheads
with several applications, ranging from small benchmarks to
actual scientific applications. We review the related work in
Section V and conclude in Section VI.

II. AN OVERVIEW OF IPM

IPM is a highly scalable workload characterization and
performance monitoring tool. Originally focused on MPI,
it has recently been extended to cover a number of other
domains such as OpenMP and file-I/O [9]. IPM acts as a thin
measurement layer between the application and the operating
system and runtime. Its goal is to obtain the complete
runtime event inventory and to derive high-level application
characteristics (such as the communication percentage or the
parallel coverage) from it. IPM’s implementation strives to
minimize monitoring overhead and application perturbation.

A recent study has shown that the application perturbation is
typically less than 0.5% of overall execution time, which is
often less than the natural system variability due to system
noise. [9] In contrast to a traditional ad-hoc performance
analysis setting, this enables a scenario where the monitoring
can be activated for each job executed on a high performance
cluster. A project investigating this approach is currently
under way at the NERSC computing center.

728, 3.20, 5.61, 4.41010...101

#events, tmin, tmax, tavgSignature (Key)

...

...
01010 101101

128 bit Event Signature (Key)

Performance Data Hash Table

Hash Function

Index i

 CALL BYTES ...

Figure 1: Event attributes and the hash table used by IPM.

During application execution, IPM’s main mechanism for
storing data is a central performance data hash table. The
structure of the performance data hash table is outlined in
Fig. 1. The hash key (also called the event signature) is
derived from the type of monitored event (e.g., MPI_Send
or fopen) as well as a number of other attributes such as
the number of bytes transmitted or read. For each hash table
entry IPM stores the number of calls made and the average
duration, as well as the minimum and maximum for each
call.

The output of IPM comes in two forms. Immediately after
program termination a profiling banner report is written to
stdout. This report summarizes the most important aspects
of the execution. IPM also writes a more detailed profiling
log in XML format which includes the full details of the
hash table. The XML file can then be used by the IPM
parser (ipm_parse) to produce a number of different
output formats. The parser can re-produce the banner, it can
generate an HTML based webpage (which is well-suited
for permanent storage of the profiling report), and it can
convert the IPM profile into the CUBE format [10]. The
last option is a recent addition and is particularly well suited
for the interactive exploration of performance data using the
CUBE GUI. CUBE is part of the Scalasca tool set [10]
and also available for download as stand-alone package[11].
In previous work [9] we have also demonstrated IPM’s
scalability up to the full size of current supercomputers
(several tens of thousands of cores).

III. CUDA MONITORING WITH IPM

The CUDA programming system consists of a compiler
(nvcc), a runtime system, and a device driver managing
the interaction with the GPU. nvcc translates CUDA kernel
code into PTX assembly which is just-in-time compiled
for the GPU by the driver. The runtime system manages
the memory transfers (which can be either synchronous

cudaError_t cudaCall(arg1,...) {
cudaError_t ret;
double begin, end, duration;

begin = get_time();
ret = real_cudaCall(arg1,...);
end = get_time();

duration = end - begin;
UPDATE_DATA(CUDA_CALL_ID, duration);

return ret;
}

Figure 2: The anatomy of an IPM library interposition
wrapper.

or asynchronous) and kernel launches. Kernel launches are
always asynchronous, except when the environment vari-
able CUDA_LAUNCH_BLOCKING is set while debugging.
A CUDA stream is the basic mechanism for concurrent
execution of multiple kernels. With the current version (3.1)
of the CUDA runtime system, the maximum number of
kernels that a device can execute concurrently is sixteen1.

A. Monitoring and Timing the CUDA Runtime

The CUDA runtime consists of two APIs, the runtime
API (e.g., cudaMalloc()) and the driver API (e.g.
cuMemAlloc()). There is a significant overlap in the
functionality between these two APIs. The runtime API
targets application developers, while the driver API offers a
richer set of mechanisms for controlling resource usage and
is often preferred by developers of libraries and middleware
components.

IPM monitors CUDA applications on the library level by
intercepting all runtime and driver API calls. We employ
the standard technique of dynamic library interposition [12]
to achieve this goal. There are 99 calls in the driver API
and 65 calls in the runtime API which are automatically
wrapped by IPM’s wrapper generator script based on a
formal specification file derived from the headers shipped
with the CUDA SDK. While all systems we have encoun-
tered so far use CUDA through dynamic libraries, it is
worthwhile noting that a very similar approach can also be
employed for statically linked executables. Specifying the
--wrap foo option to the linker allows us to provide
a wrapper function (named __wrap_foo by convention)
while making the original call available under the name
__real_foo. IPM’s wrapper generator is flexible enough
to generate either variant.

The anatomy of a wrapped CUDA call is shown in Fig. 2.
Note that the wrapper allows us to perform actions before
and after the actual call is handled by the CUDA runtime.
Notably, we can setup begin and end timers to measure the

1NVIDIA CUDA C Programming Guide Version 3.1, Section 3.2.7.3.

#define REPEAT 10000
__global__ void square(double *a, int N) {

int i, idx = blockIdx.x;
for(i=0; i<REPEAT; i++) {
if (idx < N) a[idx] = a[idx] * a[idx];

}
}

int main() {
const int N = 100000;
double *a_h, *a_d;
size_t size = N*sizeof(double);

a_h = (double *)malloc(size);
cudaMalloc((void **) &a_d, size);

// ... init array, nblocks, blocksz

cudaMemcpy(a_d, a_h, size,
cudaMemcpyHostToDevice);

square <<<nblocks, blocksz>>>(a_d, N);

cudaMemcpy(a_h, a_d, size,
cudaMemcpyDeviceToHost);

cudaFree(a_d); free(a_h);
}

Figure 3: A simple CUDA example.

duration of the call. IPM then stores the event details in its
hash table data structure as outlined in Section II.

For illustrative purposes, Fig. 3 shows a simple CUDA
kernel and host program fragment implementing repeated
squaring of double precision floating point numbers passed
in an array. Each CUDA thread is used to compute the square
of one number in the array. Fig. 4 shows the IPM profile for
the invocation for this kernel. Note the large amount of time
in cudaMemcpy and very little time in cudaLaunch2.
Also note the large amount of time in cudaMalloc which,
since this is the first call to the CUDA API, actually relates
to initialization and setup of the runtime and device.

B. Using the Event API for Device Timing

Except for the duration of blocking memory copies,
the host-only timing approach described so far offers only
limited insight into the behavior of the GPU. Luckily CUDA
offers a mechanism to measure the duration of activities
on the GPU. The CUDA event API allows the insertion of
events into the execution stream. The status of events can
then be investigated and the duration between pairs of events
can be computed.

We use a statically allocated kernel timing table where we
record the start event, the stop event, the stream in which the

2We use cudaLaunch as an example in the rest of this section. The
other functions to launch kernels in the runtime and driver API are handled
in a similar way.

##IPMv2.0###################################
#
command : ./cuda.ipm
host : dirac15
wallclock : 3.59
#
[time] [count] <%wall>
cudaMalloc 2.43 1 67.71
cudaMemcpy(D2H) 1.16 1 32.24
cudaMemcpy(H2D) 0.01 1 0.01
cudaSetupArgument 0.00 2 0.00
cudaFree 0.00 1 0.00
cudaLaunch 0.00 1 0.00
cudaConfigureCall 0.00 1 0.00
#
##

Figure 4: IPM’s banner profiling report for the kernel shown
in Fig. 3.

kernel executes, and a pointer to the kernel function (which
is passed as an argument to the cudaLaunch call). Our
cudaLaunch wrapper locates a free slot in the table and
stores the stream identifier and kernel pointer and enqueues
the start event before the launch and the stop event after
the call. After the kernel execution finishes on the GPU,
we can query the kernel duration on the GPU using the
function cudaEventElapsedTime. The only remaining
issue is when to check for kernel completion. Since kernels
are executed asynchronously, we cannot expect the GPU
be done with the kernel execution while we are still inside
cudaLaunch wrapper. It would be possible to check the
table for completed operations on each subsequent CUDA
runtime call, but doing this too frequently could cause high
overheads. Since any data that is used by the main (host)
program has to be requested explicitly by a later memory
device-to-host memory transfer, it is safe to assume that
at least one such memory transfer has to occur after the
kernel launch. We therefore chose to check for completion
of kernel execution only in memory transfer operations from
GPU to CPU. If a completed kernel execution is detected
(a cudaEventQuery call returns success), the duration
is recorded and an entry is placed in the performance
data hash table and the occupied slot in the kernel timing
table is freed. We use pseudo-function entries of the form
@CUDA_EXEC_STRM00 to denote kernel execution time in
our performance hash table. The @ signals that the entry
does not correspond to a host function and STRMi signifies
that this execution took place in stream i.

Fig. 5 shows the same kernel execution as before, now
including the additional timing from the GPU kernel execu-
tion. The banner output provides a GPU execution summary
for each stream separately, the XML profiling log contains
a per-kernel and per-stream breakdown in addition to that.

...
[time] [count] <%wall>
cudaMalloc 1.29 1 52.51
cudaMemcpy(D2H) 1.16 1 47.40
@CUDA_EXEC_STRM00 1.16 1 47.38
cudaMemcpy(H2D) 0.01 1 0.01
cudaFree 0.00 1 0.00
cudaLaunch 0.00 1 0.00
cudaSetupArgument 0.00 2 0.00
cudaConfigureCall 0.00 1 0.00
...

Figure 5: IPM profile with GPU kernel timing enabled.

...
[time] [count] <%wall>
cudaMalloc 1.29 1 52.81
@CUDA_EXEC_STRM00 1.15 1 47.09
@CUDA_HOST_IDLE 1.15 1 47.08
cudaMemcpy(D2H) 0.01 1 0.01
cudaMemcpy(H2D) 0.01 1 0.01
cudaLaunch 0.00 1 0.00
cudaSetupArgument 0.00 2 0.00
cudaConfigureCall 0.00 1 0.00
...

Figure 6: IPM profile with GPU kernel timing and implicit
host blocking identification enabled.

C. Measuring Implicit Host Blocking (Host Idle Time) and
Identifying Opportunities for Overlap

The previous example provides insight into another impor-
tant characteristic of GPU kernel execution. The device-to-
host transfer is implicitly blocked on the host until the kernel
on the GPU completes (compare 0.01 sec. vs. 1.16 sec for
the same amount of data transferred).3 This implicit waiting
time in the device-to-host memory transfer is a missed
chance to utilize accelerator overlap and thus represents a
tuning opportunity.

We set out to quantify this overhead using the following
method. First, we identified the set of CUDA operations
that exhibit the implicit blocking behavior using a micro-
benchmark which exercises each call and compares the
timing with a version in which in which we first execute
a cudaStreamSynchronize. The identified set of calls
consists of all versions of synchronous memory related
operations, with the notable exception of cudaMemset and
cuMemset. In the IPM wrapper for each identified call we
then issue a cudaStreamSynchronize for the affected
stream and measure how long this operation takes. Then
we separately measure the duration of the original call. The
implicit waiting time is reported as @CUDA_HOST_IDLE
in Fig. 6, which is again a pseudo-function entry in IPM’s
hash table.

To illustrate this in more detail, Fig. 7 shows the IPM
monitoring of GPU kernels and host idle identification for

3Memory transfer operations are optionally augmented with the direction
of the transfer (D2H/H2D) internally by IPM to facilitate this analysis.

cudaLaunch(square)cudaEventRecord

cudaMemcpy(H2D) cudaMemcpy(D2H)

cudaMemcpy(D2H)cudaStreamSynchronizecudaMemcpy(H2D)

User application
(unmodified)

IPM monitor layer

GPU

@CUDA_HOST_IDLE

execute kernel square

cudaEventElapsedTime

@CUDA_EXEC_STRM

trigger event

cudaMemcpy(H2D) cudaMemcpy(D2H)

trigger event

time

cudaLaunch(square)

Host (CPU)a

b c

d e

f

g h

KTT

KTT

Hash Table

Figure 7: A schematic illustration of the CUDA monitoring approach implemented by IPM. Time proceeds from left to right,
the top part of the figure refers to the host while the lower part refers to the GPU, where the activities are only observable
by using the CUDA event API.

the preceding example. The figure is organized in three
layers with time proceeding from left to right. The top-
most layer represents the unmodified user application, the
middle layer is the IPM monitoring library linked to the
application, and the bottom layer represents the GPU. At
a© the kernel square is launched. IPM’s wrapper for
cudaLaunch inserts an event before and after the launch
(b©, c©), adds an entry into the kernel timing table (KTT),
and passes the kernel through to the CUDA runtime. The
GPU will execute the kernel function and trigger the events
bracketing the kernel (d©, e©). Meanwhile, at f© the user
application posts a blocking cudaMemcpy immediately
after the asynchronous kernel launch. IPM performs host
idle identification for this synchronous memory transfer
by issuing a cudaStreamSynchronize which blocks
until the kernel finishes execution at e©. Finally the actual
memory transfer occurs at g©. As a last step the kernel timing
table is updated with the duration of the executed kernel
(h©). For this, the duration of the events triggered in d©
and e© is determined using cudaEventElapsedTime,
the entry in the kernel timing table is freed and performance
data is updated in the central hash table.

D. Monitoring Numerical Libraries

To utilize the full potential of supercomputers equipped
with GPUs, many applications will have to be restructured
and their kernels may have to be rewritten from scratch.
On the other hand, many applications today make heavy
use of optimized numerical libraries (i.e., FFTW, MKL, or
ACML) on conventional multicore CPUs and the switch to

an accelerated implementation of these libraries can be a
first step to explore the benefits of GPUs. In such cases it is
important that performance data can be understood in terms
of time spent in such numerical libraries.

NVIDIA ships two optimized numerical libraries with
the CUDA runtime (CUFFT and CUBLAS) and we imple-
mented wrappers for both libraries in IPM. There are 13
calls in CUFFT and 167 calls in CUBLAS. Wrappers are
again generated automatically from a specification derived
from the library’s header file and the interposition technique
is similar to the one described in Section III-A. In addition to
basic timing information, IPM records the size of matrices,
vectors, or operations for each call in the bytes parameter
in IPM’s performance data hash table. This allows for a
correlation of achieved performance with the size of the
operation in later analysis stages.

IV. EVALUATION

In this section we evaluate the functionality, accuracy,
and overheads of the presented monitoring approach. All
experimental results reported here were obtained on the
Dirac cluster at NERSC. Dirac consists of 48 nodes, each
with two Intel Xeon 5530 (Nehalem) quad core processors
(8 cores total per node), 24 gigabytes of DDR3 memory,
and a single NVIDIA Tesla C2050 (“Fermi”) GPU card
with 3 gigabytes of device memory. The Dirac nodes are
connected via QDR Infiniband. CUDA v3.1 was used in all
experiments.

A. GPU Kernel Timing Accuracy

Table I shows an evaluation of IPM’s accuracy in measur-
ing the GPU kernel execution time. We selected a number
of small benchmarks from the CUDA SDK and compared
the timing results obtained from IPM with the data delivered
by the CUDA profiler on a single node of the Dirac cluster.
The CUDA profiler is activated by setting the environment
variable CUDA_PROFILE and it writes a trace of kernel
execution statistics to a log file. To compare the timings,
we sum the kernel execution times over all invocations and
compare them with the results measured by IPM.

Evidently, the IPM timing results are in very good
agreement with the data delivered by the CUDA profiler.
The event-based timing durations used by IPM are always
larger than the CUDA profiler results because this technique
actually measures the time difference between the events
bracketing a kernel, not the kernel itself. The relative dif-
ference between the methods is larger for shorter kernels,
indicative of a small constant additional overhead as one
would expect from this event-based timing. We are currently
investigating the improvement of the timing fidelity further
by correcting for this overhead but even without correction
the results are very satisfactory.

B. Application-Level Runtime Dilatation

In this experiment we tried to evaluate the effective
runtime dilatation due to measurement overheads that an
application experiences. To account for variations in run-
time caused by varying system load, noise and jitter, we
performed an ensemble study, repeatedly running the same
application with the same inputs, both with and without IPM
monitoring enabled.

Fig. 8 shows the histogram of the total runtime observed
for 120 runs with and 120 runs without IPM monitoring
of the CUDA version of the HPL (High Performance Lin-
pack) [13] version. The mean runtime increased from 126.40
seconds without IPM to 126.67 seconds when monitoring
was enabled. This corresponds to an 0.21% increase in
runtime and is evidently well below the natural runtime
variation between runs. In this experiment IPM monitors
all MPI and CUDA events and performs kernel timing and
host idle time identification as discussed in III-C. HPL was
run on 16 nodes of the Dirac cluster in this setting.

C. CUDA Kernel Monitoring in HPL

Fig. 9 shows a CUBE snapshot of monitoring a
CUDA-enabled version of HPL [13] running on 16
nodes of the Dirac cluster. Four kernels are executed on
the GPU (dgemm_nn_e_kernel, dgemm_nt_tex_-
kernel, dtrsm_gpu_64_mm, and transpose). Note
that this view allows us to observe the distribution of the
GPU kernel runtimes on a per-stream basis and across the
nodes in the system, permitting the easy identification of

124 126 128 130 132

5

10

15
With IPM
Without IPM

Runtime [sec]

Number of runs

Figure 8: Histogram of execution times of the HPL appli-
cation, run on 16 nodes of the Dirac cluster (120 runs with
IPM and 120 runs without IPM). IPM monitors all MPI and
CUDA events, times GPU kernels, and performs host idle
identification.

imbalances, for example. In the case of HPL, the compu-
tation is fairly well balanced and the code is highly tuned
for efficiency. @CUDA_HOST_IDLE is almost zero, because
asynchronous memory transfer operations are used instead
of synchronous ones for efficiency by this code. HPL itself
then uses the CUDA event API to manually synchronize and
it spends a total of between two and five seconds per MPI
task in cudaEventSynchronize (not shown in Fig. 9).
Minimizing this time further would be an opportunity for
further performance improvement.

D. PARATEC

PARATEC [14] (PARAllel Total Energy Code) performs
ab initio quantum-mechanical Density Functional Theory
(DFT) total energy calculations using pseudopotentials and
a plane wave basis set. PARATEC is written in Fortran 90
and uses two standard libraries, BLAS and FFTW. In this
work we use the NERSC6 version of the code with the
medium problem size and we link with CUBLAS to explore
the merits of GPU acceleration.

The CUBLAS library can be used from a Fortran code by
either linking with thunking wrappers or the direct wrappers.
The thunking version preserves the usual BLAS calling
semantics and implements all interaction with the GPU
in the wrapper. Memory on the GPU is allocated, input
matrices and vectors are transferred, the actual numerical
kernel is invoked, and the results are transferred back to the
host. The direct wrappers, on the other hand, just provide
the Fortran bindings for the CUBLAS library and memory
allocation and transfer have to be done manually within the
application. This is clearly less convenient but it does allow
for overlap, whereas the thunking version implements purely
blocking calling semantics and exposes no opportunity for
overlap.

Kernel GPU Kernel Execution Time (sec)
Benchmark Invocations CUDA Profiler IPM Difference (%)

BlackScholes 512 2.540677 2.543700 0.12
FDTD3d 5 0.101354 0.101550 0.19

MersenneTwister 202 1.126475 1.127000 0.05
MonteCarlo 2 0.001988 0.002025 1.87

concurrentKernels 9 0.613755 0.614000 0.04
eigenvalues 300 5.328266 5.331000 0.05

quasirandomGenerator 42 0.039536 0.039736 0.51
scan 3300 1.412912 1.430200 1.22

Table I: Comparing the GPU kernel execution times as reported by IPM with the results obtained by using the CUDA
profiler for a number of benchmark examples from the CUDA SDK.

Figure 9: CUDA and MPI profile of the CUDA-accelerated HPL application. The MPI performance metric hierarchy is
below the CUDA metric hierarchy and not visible in this picture.

For an initial study, we linked PARATEC with the thunk-
ing CUBLAS wrappers and Fig. 10 shows the scaling of
PARATEC on 32 nodes of the Dirac cluster using 32, 64,
128, and 256 MPI processes. Switching from sequential
MKL BLAS to CUBLAS accelerates the application by
about 35% (the runtime improves from 1976 to 1285 sec-
onds). Fig. 10 shows a breakdown of the wallclock time
into time spent in MPI and CUBLAS as well as a fur-
ther breakdown into the contribution of MPI_Allreduce,
MPI_Wait, and MPI_Gather routines as well as
cublasGetMatrix and cublasSetMatrix. The most
prominent BLAS routine used by PARATEC is zgemm (dou-
ble complex matrix-matrix multiplication). As mentioned
earlier, cublasSetMatrix and cublasGetMatrix are
called by the thunking wrapper and are blocking transfers of

input and output matrices, respectively. For this PARATEC
input set, the time spent in the transfer dwarfs the time spent
in the actual zgemm computation. Overall, PARATEC scales
well up to 128 processors, then MPI starts to dominate,
particularly the contribution of MPI_Gather becomes very
large. We are currently investigating the exact cause for this
behavior but we assume that it is caused by NUMA effects.
The time spent in CUBLAS remains relatively constants.
While multiple MPI processes share a single GPU, but the
dataset is also reduced as we increase the number of MPI
processes.

We plan to refine these initial PARATEC results by
exploring opportunities for overlap and simultaneous use
of the CPU+GPU BLAS routines. The comparatively large
amount of time spent in the synchronous memory transfer

0.1

1

10

100

1000

10000

32 64 128 256

#MPI Processes

Ti
m

e
(s

ec
)

Wallclock time
Time in MPI
Time in CUBLAS
MPI_Allreduce
MPI_Wait
cublasGetMatrix
cublasSetMatrix
MPI_Gather

Figure 10: The scaling of PARATEC.

operations that we were able to identify with the help of
IPM suggests that this could be very beneficial.

E. Amber

Amber [15] is a molecular dynamics package for the
simulation of biomolecules. In this work we use a pre-release
of the CUDA version of the PMEMD code that runs on
multiple GPUs simultaneously using MPI for communica-
tion [16], [17]. The test case is the Joint AMBER/Charmm
(JAC) DHFR benchmark which consists of the protein
DHFR solvated with TIP3 water molecules. There are a total
of 23,558 atoms in the simulation and we run for 10,000
timesteps.

Fig. 11 shows the profile of Amber executed on
16 nodes of the Dirac cluster. There are 39 GPU
kernels (not shown in Fig. 11 but included in the
full XML profiling log) and Amber also uses the
CUFFT library. The most time-consuming kernels are
(in decreasing order of contribution to the execution
time) CalculatePMEOrthogonalNonbondForces
(ca. 37% of GPU time), ReduceForces (18%),
PMEShake (10%), ClearForces (8%) sec, and
PMEUpdate (7%), the rest of the kernels contribute
about 20% of GPU time. Amber achieves a quite high
GPU utilization (35.96% of total wallclock execution
time) and despite using synchronous memory transfer
operations, the host idle time is very small (0.08%).
However, the code also spends a lot of time (22.50%)
in cudaThreadSynchronize (host-side) waiting for
the kernels on the GPU to finish. As an opportunity
for further optimization, in a fully heterogeneous
implementation, the CPU could instead be utilized for
computation as well, increasing overall performance.
The PMEShake and PMEUpdate kernels are very

##IPM###
#
command : pmemd.cuda.MPI -O -i mdin -c inpcrd.equil...
start : Tue Sep 28 12:35:09 2010 host : dirac18
stop : Tue Sep 28 12:35:55 2010 wallclock: 45.78
mpi_tasks : 16 on 16 nodes %comm : 0.60
mem [GB] : 4.41 gflop/sec: 0.00
#
: [total] <avg> min max
wallclock : 732.10 45.76 45.73 45.78
MPI : 4.39 0.27 0.09 0.31
CUDA : 479.71 29.98 27.73 33.80
CUFFT : 0.87 0.05 0.00 0.86
%wall :
MPI : 0.60 0.20 0.68
CUDA : 4.62 73.85 73.85
CUFFT : 0.12 1.88 1.88
#calls :
MPI : 1326 82 75 201
mem [GB] : 4.41 0.28 0.24 0.31
#
[time] [count] <%wall>
@CUDA_EXEC_STRM00 263.27 1927994 35.96
cudaThreadSynchroni 164.76 1246794 22.50
cudaMemcpyToSymbol 17.19 276000 2.35
cudaGetDeviceCount 16.72 32 2.28
cudaLaunch 9.48 1927994 1.30
cudaMemcpy 4.17 335607 0.57
MPI_Bcast 3.71 816 0.51
cudaConfigureCall 1.69 1927994 0.23
cudaSetupArgument 1.16 1937824 0.16
@CUDA_HOST_IDLE 0.62 335943 0.08
MPI_Allgatherv 0.51 16 0.07
cufftExecR2C 0.44 10000 0.06
cufftExecC2R 0.42 10000 0.06
cudaGetLastError 0.19 1706778 0.03

Figure 11: Profile of Amber executed on 16 nodes of the
Dirac cluster.

well load balanced (across the 16 MPI processes), the
CalculatePMEOrthogonalNonbondForces kernel
is reasonably load balanced as well, while ReduceForces
and ClearForces show imbalances of up to a factor
of 55%, an elimination of which is a potential avenue for
further optimization.

V. RELATED WORK

There are several tools available to monitor and analyze
the performance of CUDA programs. NVIDIA Parallel
Nsight is a CUDA development plug in for Microsoft
Visual Studio and with debugging and performance mon-
itoring (profiling and tracing) capabilities, only available
for Windows platforms. CUDA Profiler and CUDA Visual
Profiler are provided by NVIDIA and are available for
several operating systems. Both tools record the duration
of individual kernel invocations and allow the measurement
of GPU performance counters. CUDA Visual profiler has
a graphical user interface and will run a program multiple
times if this is required due to restrictions on simultaneously
countable event sets, while the CUDA profiler is a CLI tool
that writes a text-based profiling report to a file. Both tools
are well suited to optimize individual CUDA kernels in a
workstation-type setting but have two major drawbacks for
the usage in large-scale GPU cluster environments. First,

they lack support for monitoring other widely used parallel
programming approaches such as OpenMP and MPI and
thus can’t provide a holistic picture of application behavior
in terms of these factors. Secondly, they are not meant to
be used on large-scale machines and provide no mechanism
to integrate a performance data across nodes. A user would
have to manually combine and integrate several data files
(one for each MPI process) – a tedious and error prone
process. In comparison, IPM already supports the monitoring
of MPI, OpenMP and file-IO and with this work we added
support for CUDA and accelerated numerical libraries.

There have also been forays into monitoring accelerators
by established scientific computing performance tools. The
tracing tool Vampir and the associated tracing library vam-
pirtrace have recently been extended with support for CUDA
and OpenCL [18]. This LD_PRELOAD-based monitoring
approach is similar to ours, but the intended usage of the
monitored data is different. While Vampir is a commercial
tracing tool designed for the detailed manual analysis of
time-stamped event logs at moderate scale, IPM is a freely
available highly scalable profiling tool intended for quantify-
ing resource consumption and high-level application metrics.
IPM monitors the full set calls in the CUDA runtime and
driver API as well as CUBLAS and CUFFT usage to get
a comprehensive view of accelerator usage, while Vampir
appears to be presently limited to the runtime API. Both
IPM and Vampir derive utilization metrics for the GPU and
quantify missed opportunities for accelerator overlap.

The developers of TAU (tuning and analysis utilities) have
also been working on providing support for CUDA for their
tool set. In [19] a technique for timing GPU kernel execution
using the event API similar to ours is presented. How-
ever, this approach seems to require changes to the user’s
source code ([20], Related Work section) to implement
the kernel timing, while IPM’s kernel timing approach is
entirely implemented in the dynamically linked library and
no modifications or even a re-compilation of the application
is needed. In [20] an experimental CUDA driver is utilized to
allow a more detailed analysis by providing callbacks that a
tool can register for. Unfortunately, the presented techniques
are not applicable to the publicly released drivers used in
production environments that lack the callback functionality.
Neither approach is available in the released versions of
TAU.

A paper by Du et al. [21] provides a study of tool
usage in the context of the development of numeric lin-
ear algebra kernels. The authors highlight the importance
of monitoring the interplay of multiple kernels and their
integration with host-side execution environment in addition
to tuning individual kernels with the CUDA profiler. The
absence of an integrated monitoring solution required them
to manually instrument the CUDA runtime calls and made
analysis unnecessarily tedious, a situation that we tried to
address with the extensions to IPM presented in this paper.

VI. CONCLUSION AND OUTLOOK

We have presented our comprehensive monitoring solution
for GPU-enabled clusters and supercomputers for the CUDA
programming model and accelerator libraries. We have ex-
tended the basic host-side timing of CUDA runtime calls
with a mechanism that allows the timing of kernels on the
GPU on a per-kernel and per-stream basis. By identifying
and quantifying implicit waiting times in blocking memory
transfers we have included a metric that captures missed
accelerator overlap.

We have shown that our approach is very efficient and
achieves high monitoring accuracy. In previous work [9]
have demonstrated IPM’s scalability up to several tens of
thousands of cores on modern supercomputers. Although
we presently only have access to a small size GPU cluster,
the enhancements to IPM presented in this paper will be
immediately applicable to large scale GPU-equipped sys-
tems as well, since IPM’s scalability is not impacted by the
monitoring of the CUDA events. We believe the true benefit
of comprehensive accelerator monitoring will in fact become
more apparent as the size of the GPU machine increases and
the focus has to shift from isolated kernel tuning to holistic
performance assessment taking into account the plethora of
performance-influencing factors.

Future work is planned along several directions. First, the
integration of GPU hardware performance counters would be
useful for gaining more insight into kernel behavior than is
possible from timing information only. Unfortunately there
is currently no documented interface to access the counters
but we expect such an interface to become available either
through PAPI [22] or a published interface provided by
NVIDIA. IPM already supports Component PAPI [23] and
it would thus be easy to leverage a GPU counter component.
Second, while our present work focused on CUDA, the
library-based interposition monitoring technique is similarly
applicable to OpenCL. Third, we are working on using
the derived monitoring data for performance modeling and
advanced guidance to users on the merits or pitfalls of
accelerating their applications.

ACKNOWLEDGMENT

This work was supported in part by the NSF under award
OCI-0721397. This research used resources of the National
Energy Research Scientific Computing Center, which is
supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231. The au-
thors would like to thank Bryan Catanzaro for his insightful
feedback and suggestions for improvement and Ross Walker
for providing access to the AMBER code.

REFERENCES

[1] Cray and NVIDIA, “Press release: Cray to add NVIDIA
GPUs to the Cray XE6 Supercomputer.” Seattle, WA and San
Jose, CA, September 21, 2010.

[2] CULAtools, “The CULA web page, http://www.culatools.
com/.”

[3] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak,
J. Langou, H. Ltaief, P. Luszczek, and S. Tomov, “Numerical
linear algebra on emerging architectures: The PLASMA and
MAGMA projects,” Journal of Physics: Conference Series,
vol. Vol. 180.

[4] M. Wolfe, “Implementing the PGI accelerator model,” in
GPGPU ’10: Proceedings of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Units. New
York, NY, USA: ACM, 2010, pp. 43–50.

[5] The Portland Group, Inc., “The PGI Fortran and C accelerator
programming model,” available at http://www.pgroup.com/
accelerate.

[6] CAPS, “HMPP workbench http://www.caps-entreprise.com/
hmpp/.”

[7] D. Skinner, “Performance monitoring of parallel scientific
applications,” Lawrence Berkeley National Laboratory, Tech.
Rep. LBNL-PUB-5503, May 2005.

[8] K. Fürlinger, N. J. Wright, and D. Skinner, “Performance
analysis and workload characterization with IPM,” in Pro-
ceedings of the 3rd International Workshop on Parallel Tools
for High Performance Computing, Dresden, September 2009.

[9] ——, “Effective performance measurement at Petascale using
IPM,” in Proceedings of the 16th International Conference on
Parallel and Distributed Systems (ICPADS 2010), Shanghai,
China, Dec. 2010.

[10] M. Geimer, F. Wolf, B. J. N. Wylie, and B. Mohr, “Scalable
parallel trace-based performance analysis,” in Proceedings
of the 13th European PVM/MPI Users’ Group Meeting on
Recent Advances in Parallel Virtual Machine and Message
Passing Interface (EuroPVM/MPI 2006), Bonn, Germany,
2006, pp. 303–312.

[11] FZ Juelich, “CUBE webpage,” http://www.fz-juelich.de/jsc/
scalasca/software/download.

[12] G. Nakhimovsky, “Debugging and performance tuning with
library interposers,” Jul. 2001, http://developers.sun.com/
solaris/articles/lib interposers.html. Retrieved 2010/03/01.

[13] M. Fatica, “Accelerating Linpack with CUDA on heteroge-
nous clusters,” in GPGPU-2: Proceedings of 2nd Workshop
on General Purpose Processing on Graphics Processing
Units. New York, NY, USA: ACM, 2009, pp. 46–51.

[14] “The PARATEC web page, http://www.nersc.gov/projects/
paratec/.”

[15] “Amber home page http://ambermd.org.”

[16] S. L. Grand, A. W. Goetz, D. Xu, D. Poole, and R. C. Walker,
“Acceleration of Amber generalized born calculations using
NVIDIA graphics processing units.” 2010, in preparation.

[17] ——, “Achieving high performance in Amber PME simula-
tions using graphics processing units without compromising
accuracy,” 2010, in preparation.

[18] R. Dietrich, T. Ilsche, and G. Juckeland, “Non-intrusive
performance analysis of parallel hardware accelerated ap-
plications on hybrid arichtectures,” in Proceedings of the
1st International Workshop on Software Tools and Tool In-
frastructures (PSTI 2010), co-located with ICCP 2010, San
Diego, CA, Sep. 2010.

[19] S. Mayanglambam, A. D. Malony, and M. J. Sottile, “Perfor-
mance measurement of applications with GPU acceleration
using CUDA,” in Proceedings of the International Conference
on Parallel Computing (ParCo), Sep. 2009.

[20] A. D. Malony, S. Biersdorff, W. Spear, and S. Mayanglam-
bam, “An experimental approach to performance measure-
ment of heterogeneous parallel applications using cuda,” in
ICS ’10: Proceedings of the 24th ACM International Confer-
ence on Supercomputing. New York, NY, USA: ACM, 2010,
pp. 127–136.

[21] P. Du, P. Luszczek, S. Tomov, and J. Dongarra, “Mixed-tool
performance analysis on hybrid architectures,” in Proceedings
of the 1st International Workshop on Software Tools and Tool
Infrastructures (PSTI 2010), co-located with ICCP 2010, San
Diego, CA, Sep. 2010.

[22] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. J. Mucci, “A
portable programming interface for performance evaluation
on modern processors,” Int. J. High Perform. Comput. Appl.,
vol. 14, no. 3, pp. 189–204, 2000.

[23] “Component PAPI documentation: http://icl.cs.utk.edu/
projects/papi/files/documentation/PAPI-C.html.”

