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Abstract—As supercomputers are being built from an ever
increasing number of processing elements, the effort required to
achieve a substantial fraction of the system peak performance
is continuously growing. Tools are needed that give developers
and computing center staff holistic indicators about the resource
consumption of applications and potential performance pitfalls
at scale. To use the full potential of a supercomputer today,
applications must incorporate multilevel parallelism (threading
and message passing) and carefully orchestrate file I/O. As a
consequence, performance tools must also be able to monitor
these system components in an integrated way and at the full
machine scales.

We present IPM, a modularized monitoring approach for
MPI, OpenMP, file I/O, and other event sources. We describe
its implementation design principles, which are targeted for
efficiency and minimal application perturbation, and present an
application study of using IPM at scale.

I. INTRODUCTION

Moore’s Law continues unabated; the number of transistors
on a chip still doubles every eighteen months. However,
because of power constraints, clock speeds remain approxi-
mately constant and the extra transistors are being used to add
cores. Therefore supercomputing systems are being built with
an ever increasing number of processing elements. Doubling
roughly every thirteen months, the performance increase of
supercomputers has outpaced the predictions of Moore’s law,
primarily due to increased level of parallelism [1]. This trend
will only be exacerbated by the widespread adoption of multi-
and manycore CPUs in the future. In fact, exascale systems are
predicted to feature millions of compute cores. It is therefore
clear that some form of multilevel parallelism will play a major
role in the programming of these systems. A second trend is
decreased overall I/O capability. The ratio of I/O bandwidth
to FLOPS is decreasing and in an exascale timeframe are
expected to be at least an order of magnitude worse, relatively
speaking, than today. Therefore I/O performance is becoming
an increasingly important factor. To understand all these po-
tential complex performance issues and their interactions there
is a clear need for tools that will allow application developers
to gain an understanding of their performance issues.

Tools for detecting performance issues in High Performance
Computing (HPC) environments are available in a wide variety
of forms, purposes and scopes of application. Which tool
to use depends largely on what sort of problem one is

addressing. To use an analogy from motor vehicles: There
are complex tools used by mechanics and simple diagnostic
tools (eg. warning lights) used by their regular operators. We
contend that there is similarity to the motor vehicle case and
room for both modes of operation in the HPC tools arena.
This view has been motivated by many years of experience
at HPC centers that teaches us that if obtaining performance
information is onerous, if it involves an appointment with
a mechanic, it is much less likely to happen. In previous
work we have described our solution to this problem - the
Integrated Performance Monitoring (IPM) framework [2], [3].
To date, primarily because of our focus on ease of use, this
has been used by more than 310K batch job performance
profiles have been collected on NERSC machines over the past
6 years. This focus on ease of use and providing a compact
overall view of performance has also led to IPM being used
in several commercial HPC vendors to allow them to gain an
understanding of their potential customers codes within the
context of procurements.

The collected IPM performance profiles provide a rich data
set for exploring topics of interest of managers of super-
computing centers. By analyzing the data they contain about
memory, compute and network usage it is possible to make
vital decisions about where to provision more resources to
remove bottlenecks, as well as allowing the determination
of attractive features for future machine procurements. For
example, with the current pressures on memory per core,
an understanding of an HPC center’s workloads memory
requirement is crucial.

In this paper we present a re-architected implementation
of our existing workload and performance analysis tool IPM
which features a modularized design and adds monitoring
modules for OpenMP, and file I/O operations. IPM retains
the focus on ease of use and avoiding application perturbation
while focusing less on a drill-down into the applications than
other tools.

The main contributions of this paper are:
• We present an integrated framework for the simulta-

neous analysis of the three most important aspects of
performance on today’s supercomputers (communication,
threading, file I/O).

• We describe our tool IPM that implements this framework



in a modularized and extendable architecture.
• We show that we achieve highly efficient monitoring

with very low overheads and perturbation of the target
application.

• We demonstrate that our tool is scalable to the full size
of contemporary supercomputers.

The rest of this paper is organized as follows: In Sect. II we
introduce the design and implementation of IPM. We describe
the event data sources, the event processing and storage, and
the data processing and analysis. In Sect. III we evaluate IPM
at scale on a nuclear fusion simulation code. Due to space
restrictions we focus on the OpenMP and MPI aspects in this
paper. We describe related work in Sect. IV and conclude in
Sect. V with an outlook on future work.

II. PERFORMANCE MONITORING WITH IPM

A. IPM Design Principles

The objective of IPM is to deliver an inventory of program
execution events in sufficient detail to inform the user about
performance while introducing minimal application overheads.
The general model we assume is that of an application com-
prised of n potentially multi-threaded processes with events
of interest happening in these processes. Potential sources of
events are the sending and receiving of messages using MPI,
collective operations, file I/O operations or the execution of
OpenMP-parallel regions.

While it can be configured to write traces to a log file
as well, IPM’s strength lies in its profiling mode where the
time stamps of individual events are not of interest and only
statistics of event durations are collected. To efficiently process
and store the potentially very large number of events occurring
in an application, we derive a unified event signature and
encode it as a bit vector. The event signature contains the
critical information about the event we are interested in. Fig. 1
shows the structure of an event signature bit vector as used by
IPM with 128 bits.

• Event ID: Corresponds to the numeric encoding of the
event being monitored (completion of an MPI_Send
command, execution of an OpenMP parallel region, etc.).
12 reserved bits correspond to 4096 different types of
supported events.

• Region ID: Users can manually mark regions of interest
using the MPI_Pcontrol mechanism. IPM implements
these calls and creates an internal data structure to
represent the region. Event statistics are then computed
globally (for the entire application) as well as for each
marked region separately.

• Thread ID: This 8 bit field encodes the ID of the
thread in which the monitored event originated. In IPM
there is currently only one hash table per process, which
is manipulated exclusively in the sequential portions of
the application. Multithreaded data is kept in thread-safe
data structures local to a module (cf. Sect. II-C) until a
sequential region is reached, at which point the central
hash table is updated.

• Callsite ID: IPM tries to derive the call site of a
monitored function by walking the call stack using
libunwind or other stack walking libraries. Recording
the call site has the benefit of being able to differentiate
between MPI calls with the same signature (communica-
tion partner, message size, ...) but with different dynamic
contexts.

• Partner ID: This field encodes the communication part-
ner for MPI operations and the file ID for file operations.
For collective MPI operations this entry holds the root of
the operation and for point to point operations the peer
rank is either derived from the arguments to the MPI call
or by examining the MPI_Status structure.

• Buffer/Message Size: This field encodes the length of
the message for MPI operations and the number of bytes
read or written for I/O operations. 32 bits are reserved
for this field, corresponding to buffer sizes of up to four
gigabytes per operation.
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Fig. 1: The structure of the 128 bit event signatures.
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Fig. 2: Event signatures and the hash table used by IPM.

IPM observes events at runtime as they are happening in the
application, computes their signature and updates the event’s
statistics in a performance data table. In general, many events
may be mapped to the same signature, such as an MPI message
exchange between communication partners in a loop with
the same parameters. To store and process the performance
data efficiently, IPM uses a hash table to implement the
performance data table. The event signature is used as the
hash key and the hash values are the number of occurrences,
the minimum, maximum, and sum of the duration of the events
(cf. Fig. 2). Once events from different sources are stored
in the hash table, they can be processed and analyzed in a
uniform manner.

B. Performance Data Event Sources
To monitor MPI events, we use the standard PMPI interface.

Currently we monitor file I/O at the level of the standard C
library calls (fopen(), fclose(),...) and Unix system calls
(open(), close(),...), by using dynamic library interposi-
tion [4] or wrapping these calls at link time for static binaries.
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Fig. 3: The modularized design of IPM.

To monitor OpenMP regions we rely on compiler inserted
instrumentation as provided by the PGI and Cray compiler
suites. If instructed, the compiler will insert instrumentation
points in and around OpenMP constructs that are implemented
and monitored by IPM. The structure of these calls is largely
similar to the POMP calls [5] added by the OPARI source-
to-source instrumenter [6]. As an important difference, the
source code instrumentation approach requires a recompilation
and often reaches its limits when users perform non-standard
preprocessing on their source code, such as the inclusion
of OpenMP pragmas from header files. The compiler-based
instrumentation employed by IPM has no such limitations.

C. Module Concept

In order to adapt to different requirements and system
capabilities, IPM is designed as a modularized system. The
schematic system architecture of IPM is shown in Fig 3. The
IPM core module is responsible for initialization of centralized
data structures such as the hash table and for registering all
available modules. IPM modules are a mechanism of compile-
time specialization and not dynamically loadable components,
although some runtime configuration is possible using envi-
ronment variables.

The transport module refers to the mechanism used by
IPM to aggregate results across tasks. Since IPM can be
used to monitor a parallel application on a per-process level,
performance data is co-located with the application processes
and needs to be aggregated to compute the IPM application
report and log file. Currently the transport module is available
for MPI only, but nothing precludes the usage of other
communication mechanisms, such as UPC or MRNet [7].

The monitoring components for MPI, OpenMP, and file I/O
are each implemented as a separate module. Any subset of
these feature modules can be selected to form a valid IPM
installation. Notably, the monitoring of file I/O is available
for purely sequential jobs without any remaining dependency
on MPI (i.e., such an IPM installation can be built on machines
without having an MPI compiler and runtime installed). We
have used this feature successfully in collaboration with LBNL

and CERN scientists analyzing the AthenaMP code [8] which
is used for processing data from the ATLAS particle physics
experiment.

A number of other modules are currently under construction,
such as an MPI-IO component, a module for monitoring the
CUDA runtime for GPU enabled systems, and a module for
analyzing network interface counters such as those found
on Infiniband hardware. Regular (CPU) hardware perfor-
mance counters are accessed using a module that encapsulates
PAPI [9] functionality. IPM supports component PAPI and
reads an environment variable IPM_HPM for a user-specified
list of counters. Any combination of counter names (from
several PAPI components, such as PAPI_FP_OPS for floating
point operations of and ETH0_RX_BYTES for the number of
received bytes on the first Ethernet adapter) can be specified
and IPM will keep track of which event maps to which PAPI
component.

Finally, there is module for self-monitoring of IPM’s ac-
tivity. If enabled, an appendix to IPM’s profiling report is
available detailing some of the important internal runtime
statistics such as hash table fill rates, time in MPI_Init and
MPI_Finalize on IPM’s behalf and communication amount
and time used for performance data aggregation by IPM.

D. Performance Data Output and Post-Processing

IPM’s output comes in two forms, each of which can be
configured to be disabled, or delivered in a full or terse
format. The most basic output IPM delivers is a banner
written to the terminal immediately upon application exit
which holds some of the most important high-level job metrics.
These include the consumed wallclock time, the number of
processes, threads, and nodes the job ran with, and the overall
percentage of time spent in MPI, OpenMP parallel regions,
and for performing file I/O. Straight forward access to high
level metrics is an important aspect of IPM’s philosophy as it
allows users and computing center staff to get an idea of the
overall execution characteristics and resource consumption of
an application.

By setting the environment variable IPM_REPORT to
full, a more detailed version of this banner is printed,
containing individual events ranked by their contribution. An
example showing the full banner of an application is given
in Fig. 4. The full banner details the contributions to the
wallclock time by MPI and file I/O calls and the time spent
in parallel regions as the minimum, maximum, and average
over all ranks. The distribution of the time in OpenMP (OMP)
and the idle time in OpenMP parallel regions (OMP idle) at
the end of parallel and worksharing regions is displayed in a
similar way. The last section lists all individual contributing
events sorted by their summed wallclock time. The special
event OMP_PARALLEL refers to the execution of a parallel
region and the [count] column refers to the number of
executions of this parallel region.

Analyzing the performance of individual processes is pos-
sible by requesting an IPM log file. This file in XML format
holds detailed information for about each rank’s events and



##IPM#######################################################
#
# command : ./a.out
# start : Sun Mar 14 16:55:39 2010 host : nid01829
# stop : Sun Mar 14 17:04:33 2010 wallclock : 533.12
# mpi_tasks : 2048 on 1024 nodes %comm : 29.41
# omp_thrds : 6 %omp : 50.63
# files : 12 %i/o : 12.09
# mem [GB] : 2774.44 gflop/sec : 418.58
#
# : [total] <avg> min max
# wallclock : 1091671.57 533.04 532.99 533.12
# MPI : 321034.43 156.76 109.03 239.23
# I/O : 131947.08 64.43 11.83 113.87
# OMP : 552665.28 269.86 205.07 305.36
# OMP idle : 48262.98 23.57 21.30 27.40
# %wall :
# MPI : 29.41 20.45 44.88
# OMP : 50.63 38.47 57.28
# I/O : 12.09 2.22 21.36
# #calls :
# MPI : 76235998 37224 37223 37320
# mem [GB] : 2774.44 1.35 1.35 1.36
#
# [time] [count] <%wall>
# OMP_PARALLEL 552665.28 131439989 50.63
# MPI_Allreduce 247648.04 14438400 22.69
# fread 69813.27 5488640 6.40
# ...
#
############################################################

Fig. 4: An example full application banner as delivered by
IPM.

includes a full copy of the hash table if IPM_LOG=full is
specified. The XML file is written sequentially by a desig-
nated application process (rank 0 by default) which receives
each process’ performance information, one by one. At high
concurrencies a parallel writing scheme is employed. In this
case MPI-IO is used and each rank writes to its portion of
the log file in parallel. This mechanism is very efficient and
scales well to the full size of machines. For example, we have
observed that writing the full IPM log at 72 000 processes
takes less than 2 minutes on the Cray XT5 ‘Kraken’ at Oak
Ridge National Laboratory.

E. HTML Profiling Report

The IPM XML file is input to a parser that generates
an HTML representation of the profiling report. Using stan-
dard HTML to visualize performance data has the advantage
that no special graphical user interface (GUI) is required to
view the data. A new parser and techniques using advanced
HTML/Javascript charting to address the scalable visualization
of data at high concurrencies are currently under development.

Among others, the HTML profiling page contains these
entries:

• The data contained in the text-based banner is reproduced
in a table at the top of the profiling report.

• A pie chart (Fig. 5a) displays the breakdown of the total
MPI time into the various contributing MPI calls such as
MPI_Allreduce or MPI_Wait.

• For each monitored hardware counter event, the min-
imum, maximum and average values are displayed as
well as the location (rank) of where the minimum and
maximum values are achieved.

MPI_Recv
MPI_Send
MPI_Wait
MPI_Allreduce
MPI_Irecv
MPI_Bcast
MPI_Barrier
MPI_Comm_rank
MPI_Comm_size

(a) MPI pie chart.
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Fig. 5: Some of the performance data displays provided by
IPM.



• A load balance line graph showing the consumed DRAM
memory, floating point rate, and wallclock time. The
horizontal axis is the rank dimension and the graphs are
available both in sorted (by memory, FLOPS, wallclock
time), as well as unsorted (natural rank order) variant.

• A stacked load balance graph shows the breakdown of
the MPI time into individual MPI calls over the rank
dimension. An example for this graph (sorted by rank)
is shown in Fig. 5b. This type of display is especially
useful to identify and locate load imbalance situations.

• Cumulative distribution graphs provide an understanding
of the message size distribution of an application. The
horizontal axis is the buffer size n used in the operation
and the vertical axis denotes how many calls have had a
buffer size smaller or equal to n.

• A similar cumulative distribution graph is also provided
where the accumulation is not performed over the number
of calls but the time spent in the messaging operation
instead. The graph in Fig. 5c shows an example.

• A communication topology graph as shown in Fig. 5d.
This graph shows the amount of data exchanged between
a pair of processes. The sending process is depicted on
the horizontal axis, the receiving process is shown on the
vertical axis.

III. EVALUATION

In order to illustrate the capabilities and performance of
IPM we first present a study of the efficiency and overheads
of IPM and then present an application case study using GTC
(a code for the simulation of nuclear fusion) on three different
architectures with different software environments.

A. Efficiency of IPM

We evaluate the efficiency of IPM using three different
experiments. First we evaluate the raw hash table performance
and then try to answer the question of how many events
IPM can process per second taking hash table operations and
event timing into account. Finally, we study the effect IPM
monitoring has on an application by conducting an ensemble
study of the MAESTRO application with and without IPM
enabled. We find that on average IPM causes an overhead
of less than 0.25% for the application kernel of MAESTRO
and less than 0.5% for the whole application (including
writing the profiling report). On most HPC resources today
these perturbations are indistinguishable from natural runtime
variations observed due to contention for shared resources.

Fig. 6 shows the raw hash table performance of IPM on an
Intel Nehalem based system. 10 Million events are prepared
with a varying number of unique keys (corresponding to
the horizontal axis) and stored in the hash table with 32K
entries, including updating the counts and timing statistics,
but not actually getting time stamps. The performance depends
heavily on the compiler and the optimization flag used but with
reasonable settings for production code IPM can process the
10 Mio events in less than 0.8 Seconds. Performance depends
on the number of unique keys used, as collisions become more

Storing 10 Mio events (random keys) in a hash table of size 32573
(Intel Nehalem, 2.67 GHz)
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likely when the hash table fill rate approaches 100%. In the
vast number of application test cases we have observed with
a 32K hash table, the fill rate is well below 50%.

Fig. 7 highlights the contribution of acquiring time stamps
as part of the monitoring process. Here we again record 10
Million events, this time by calling MPI_Comm_rank()
in a simple MPI program. The bars in the graph show the
timings on two different systems at NERSC, one based on
an AMD Opteron processor, the other one based on Intel
Nehalem. The leftmost pair of bars forms the baseline. In
this case, the application actually calls PMPI_Comm_rank()
to bypass the monitoring altogether. The bars to the right
correspond to a NOP wrapper i.e., the call is wrapped by
IPM but no monitoring is performed and the routine returns
immediately. In the next experiment all monitoring actions
are performed but time stamps are not acquired. Finally, the
last three bars show the influence of three different sources
for timing data. RDTSC corresponds to the low level time
stamp counter on modern microprocessors, gettimeofday
is an operating system timing routine and MPI_Wtime is
MPI’s timing mechanism. Evidently the last two experiments
show comparable results on both systems, suggesting that
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MPI_Wtime is in fact based on gettimeofday. RDTSC
is the more efficient timing mechanism on both platforms.

To summarize: as a ballpark number we claim that IPM
can handle at least roughly 10 Million events per second per
application process on a contemporary platform. This number
should exceed the messaging rate of an individual process in
today’s HPC applications.

In the last efficiency experiment we tested the overall influ-
ence that IPM has on the runtime of an application. Previous
experiments indicated that MAESTRO from the NERSC-6
benchmark suite was the most demanding application and so
we ran MAESTRO with 256 MPI processes 9 times with and
9 times without IPM monitoring. Fig. 8 shows the results.
On the left hand side are the runs without IPM and on the
right side are the runs with IPM. The vertical axis is the
runtime of the application kernel (not including startup and
shutdown), a short line is plotted for each individual run.
We see that the average runtime increased from 1060.08 to
1062.73 seconds (less than 0.25%) and that this is well below
the natural variation in runtimes for the same binary on this
system. For the full application (this includes writing the log
file to disk) the average increase in runtime is less than 0.5%.

B. Application Study: GTC

The Gyrokinetic Torodial Code (GTC) is used to perform
3D Particle In Cell (PIC) simulations of gyrokinetic plasma
microturbulence [10]. In this case study we use the NERSC6
GTC benchmark code. The benchmark problem simulates 16×
106 ions and electrons on a grid of size 1.35x106 and runs for
50 timesteps.

We ran GTC on three different machines:
Kraken is a Cray XT5 machine based at Oak Ridge National
Laboratory. It has hex-core AMD Istanbul processors running
at 2.3GHz, with dual socket nodes and a Cray Seastar 2+
interconnect.
Ranger is a Sun constellation cluster based at the Texas Ad-
vanced Computing Center. It has quad-core AMD Barcelona
processors running at 2.3 GHz, with quad-socket nodes and
a single Single Data Rate (SBR) Infiniband link per node to
a Sun Constellation IB switch that has a full Clos fat-tree
topology.
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Fig. 9: Overall scaling of GTC on the three machines.

Carver is an IBM iDataPlex cluster based at NERSC. It has
quad-core Intel Nehalem processors running at 2.67 GHz, with
dual socket nodes and a single Quad Data Rate (QDR) IB link
per node to a network that is locally a fat-tree with a global
2D-mesh.

Fig. 9 shows the overall strong scaling plot of GTC on the
three machines, using four OpenMP threads per MPI task on
Carver and Ranger and six on Kraken. Carver is the fastest,
followed by Kraken and then Ranger. The scaling plot also
shows that on Kraken the scalability of this benchmark tails
off above about 12K cores as the individual tasks run out of
parallel work, Carver seems to follow the same trend (due to
the smaller size of the machine we were not able to collect
numbers above 4K), while there is already a considerable
slowdown when going from 2K to 4K processors on Ranger.

Using IPM we were able to measure the performance of
GTC on all three platforms up to a maximum concurrency
of 49,152 cores. The overall performance breakdown obtained
using IPM is shown in Fig. 10. Fig. 10a shows the scaling
of the OpenMP portion of the runtime and Fig. 10b shows
the scaling of the MPI time. These give some indication as to
reasons that Carver is the fastest machine overall, it has both
the fastest processors and the fastest interconnect, whereas
Ranger has both the slowest processors and interconnect. The
OpenMP part of the GTC code scales very well on all three
machines up until the code starts running out of parallel work.
In contrast, Ranger gets hit badly by the slow interconnect at
4096 cores and this is the primary reason why the code does
not scale up to 4K cores on Ranger (the compute part scales
well, the communication part does not).

The internal timing routines within GTC indicate that a
majority of the time for this benchmark in two routines,
shifte() and pushe(). Using the region functionality of
IPM described in Section II we added two additional lines
of code to GTC to allow us to obtain separate IPM profiles
for the shifte() routine. Some of this profiling data is
shown in Fig. 11. This shows that the shifte() routine
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for three different machines.
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Fig. 11: Load balance of GTC’s shifte() routine at 1536 cores and 49152 cores.

is substantially load-imbalanced across the processes, that the
imbalance is related to the number of particle domains in the
code, and that the imbalance is caused by the loop(s) immedi-
ately preceding the MPI Allreduce. Upon further investigation
this did indeed turnout to be the case.

Based on this result we developed an alternative particle
distribution layout for GTC. Using this alternative distribution
indeed resulted in much improved load balance and reduced
time in the MPI_Allreduce collective operation substan-
tially. However, due to reduced spatial locality of this new
particle distribution, the sequential performance suffered from
an increased number of cache misses, erasing the gains in
communication performance. Improving load balance while
retaining cache locality in GTC is ongoing work.

IV. RELATED WORK

There are a number of related performance analysis tools
for scientific MPI and OpenMP applications. TAU [11], [12]
is a versatile tool set for MPI, OpenMP and Pthreads codes

using source instrumentation for function level data collection.
HPCToolkit [13], [14] is a tool based on binary analysis and
statistical sampling which has its strengths in the detection of
code hotspots but places less focus on analysis of communica-
tion behavior. Scalasca [15], [16] is a tool for tracing of MPI
and OpenMP applications based on a replay of the commu-
nication events and the identification of common patterns of
inefficiency. Runtime summarization (profiling) capability was
added recently. In addition to tools from academic and research
labs, vendor-provided tools such as Cray PAT [17] and Intel
Trace Collector, Trace Analyzer, and Thread Profiler [18],
[19] are available but frequently limited to their particular
platforms. ompP [20] is full-featured OpenMP profiling tool
that relies on source code instrumentation using the Opari [6]
source-to-source instrumenter. In the case of IPM the limi-
tations and shortcomings of source-to-source instrumentation
are not acceptable, and as a consequence IPM uses compiler
inserted instrumentation to gather high level OpenMP metrics.



In contrast to the tools mentioned above, IPM is designed
to give a high level overview of application activity while
introducing minimal overheads and being usable in a “flip
of the switch” fashion. Given a compatible setup, enabling
IPM can be accomplished with a single command such as
module load IPM . This usage scenario precludes the
usage of source code instrumentation (TAU), trace replay (e.g.,
Scalasca), and binary analysis (e.g., HPCToolkit).

GTC has been the subject of previous performance studies
(e.g. [21]) and the load balance issues discussed in this paper
have also been identified in these earlier studies.

V. CONCLUSIONS

We have presented IPM, a modularized application perfor-
mance and workload analysis tool for MPI, OpenMP and file
I/O. Compared to the old implementation of IPM, which was
focused only on MPI, we have extended the monitoring cov-
erage into the areas of most importance for today’s supercom-
puters (threading and file I/O). To the best of our knowledge
IPM is the first research tool to utilize the compiler-inserted
instrumentation for OpenMP monitoring. Previous solutions
based on source-code instrumentation where not suitable for
IPM’s use case that mandates minimal user involvement.

IPM focuses on ease of use and scales today to several tens
of thousands of processors. With our focus on lightweight, un-
intrusive measurement of performance we expect to be able
to scale to even larger systems with minimal effort.

Our new modular design has allowed us to add measurement
capabilities for OpenMP and I/O. It will also allow us to easily
add measurement capabilities for new hardware features such
as GPUs or other co-processors.

IPM’s ease of use has enabled the NERSC center to collect
over 310 000 profiles of jobs running 20 minutes or longer on
three of its systems over the past six years to gain valuable
insights into user and application behavior. Likewise, users
benefit from the usage of IPM in their day to day code devel-
opment and production runs by developing an understanding
of resource requirements and tradeoffs. This is critical when
dealing with varying “performance weather” on systems or
when porting from one machine to another. Often an IPM
profiling report can be the starting point for a more in depth
evaluation with a tracing or statistical sampling tool.

In the transition to petascale computing, HPC will see
shifts in the methods, libraries, and languages deployed by
applications. IPM provides a modular way to adapt to the
technology shifts in a way that reveals bottlenecks across all
the layers involved. We hope that this vertical approach to
performance analysis will provide an extensible and durable
method to make HPC codes run faster. We plan to work on the
addition of monitoring modules for a variety of data sources
such as MPI-IO and network interface card counters. We are
also currently working on a new parser and data presentation
component targeted at supporting high-concurrency data.
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