
Performance Profiling for OpenMP Tasks

Karl Fürlinger1 and David Skinner2

1 Computer Science Division, EECS Department
University of California at Berkeley

Soda Hall 593, Berkeley CA 94720, U.S.A.
fuerling@eecs.berkeley.edu

2 Lawrence Berkeley National Laboratory
1 Cyclotron Road, Berkeley CA 94720, U.S.A.

deskinner@lbl.gov

Abstract. Tasking in OpenMP 3.0 allows irregular parallelism to be ex-
pressed much more easily and it is expected to be a major step towards
the widespread adoption of OpenMP for multicore programming. We dis-
cuss the issues encountered in providing monitoring support for tasking
in an existing OpenMP profiling tool with respect to instrumentation,
measurement, and result presentation.

1 Introduction

The direct support for task parallelism in version 3.0 of the OpenMP standard
is expected to be a major step towards the widespread adoption of OpenMP
for shared memory multicore programming. Tasking allows irregular forms of
parallelism to be expressed more easily and it will allow OpenMP to be employed
in new application areas.

In this paper we discuss the issues we encountered in providing monitoring
support for tasking in the ompP profiling tool with respect to instrumentation
and measurement and result presentation. Since tasking results in more dynamic
and unpredictable execution characteristics of OpenMP codes, we believe tool
support will be more important for users that would like to understand how their
code executes and what performance it achieves. As an example, the OpenMP
v3.0 specification states that, when a thread encounters a task construct, “[it]
may immediately execute the task, or defer its execution”. To some application
developers it will be important to know what decision the runtime took and
ompP’s profiles offer this kind of information, among other things.

The rest of this paper is organized as follows: in Sect. 2 we give a short
overview of the OpenMP profiling tool we have extended in this study to support
tasking. In Sect. 3 we describe the extensions and modifications made, at the
instrumentation, measurement, and result presentation stages. In Sect. 4 we
discuss related work and in Sect. 5 we conclude and discuss areas for future
work.

2 The OpenMP Profiler ompP

ompP is a profiling tool for OpenMP applications that does not rely on nor is
limited to a particular OpenMP compiler and runtime system. ompP differs from
other profiling tools like gprof or OProfile [6] in primarily two ways. First, ompP
is a measurement-based profiler and does not use program counter sampling. The
application with source code instrumentation invokes ompP monitoring routines
that enable a direct observation of program execution events (like entering or
exiting a critical section). The direct measurement approach can potentially lead
to higher overheads when events are generated very frequently, but this can be
avoided by instrumenting such constructs selectively. An advantage of the direct
approach is that the results are not subject to sampling inaccuracy and hence
they can also be used for correctness testing in certain contexts.

The second difference lies in the way of data collection and representation.
While general profilers work on the level of routines, ompP collects and displays
performance data in the user model of the execution of OpenMP events [5]. For
example, the data reported for critical sections contain not only the execution
time but also list the time to enter and exit the critical construct (enterT and
exitT, respectively) as well as the accumulated time each threads spends inside
the critical construct (bodyT) and the number of times each thread enters the
construct (execC). An example profile for a critical section is given in Fig. 1

R00002 main.c (20-23) (unnamed) CRITICAL

TID execT execC bodyT enterT exitT

0 1.00 1 1.00 0.00 0.00

1 3.01 1 1.00 2.00 0.00

2 2.00 1 1.00 1.00 0.00

3 4.01 1 1.00 3.01 0.00

SUM 10.02 4 4.01 6.01 0.00

Fig. 1: Profiling data delivered by ompP for a critical section.

Profiling data in a similar style is also delivered for other OpenMP con-
structs, the columns (execution times and counts) depend on the particular con-
struct. Furthermore, ompP supports the query of hardware performance counters
through PAPI [3] and the measured counter values appear as additional columns
in the profiles.

Profiling data are displayed by ompP both as flat profiles and as callgraph
profiles, giving both inclusive and exclusive times in the latter case. The call-
graph profiles are based on the callgraph that is recorded by ompP. An example
callgraph is shown in Fig. 2. The callgraph is largely similar to the callgraphs
given by other tools, such as callgrind [9], with the exception that the nodes are
not only functions but also OpenMP constructs and user-defined regions, and
the (runtime) nesting of those constructs is shown in the callgraph view. The

callgraph that ompP records represents the union of the callgraph of each thread.
That is, each node reported has been executed by at least one thread.

ROOT [critical.i686.ompp: 4 threads]

REGION +-R00004 main.c (40-51) (’main’)

PARALLEL +-R00005 main.c (44-48)

REGION |-R00001 main.c (20-22) (’foo’)

REGION | +-R00002 main.c (27-32) (’bar’)

CRITICAL | +-R00003 main.c (28-31) (unnamed)

REGION +-R00002 main.c (27-32) (’bar’)

CRITICAL +-R00003 main.c (28-31) (unnamed)

Fig. 2: Example callgraph view of ompP.

3 Supporting Tasks in ompP

The OpenMP 3.0 specification introduces two new constructs for tasking, task
and taskwait. If a thread encounters a task construct, it packages up the code
and data environment and creates the task to be executed in the future, poten-
tially by a different thread. The taskwait construct is used to synchronize the
execution of tasks. A thread can suspend the execution only at a task schedul-
ing point (TSP). The same thread will pick up the execution of a task, unless
the task is untied. In this case, any thread can resume the execution and no
restriction on the location of TSPs in untied tasks exists.

3.1 Instrumentation

ompP relies on source code instrumentation using Opari [7] to add monitoring
calls according to the POMP specification inside and around OpenMP con-
structs. We extended Opari to handle the task and taskwait constructs as
described below.

For task, an instrumented piece of code looks similar to the pseudocode
depicted in Fig. 3. I.e., enter/exit instrumentation calls are placed on the
outside of the task construct and begin/end calls are placed as the first and last
statements inside the tasking code, respectively.

If specified, the untied clause is detected and POMP_Utask_* calls are gener-
ated in this case. A simple enter/exit pair of instrumentation calls is added for
the taskwait clause.

3.2 Measurement

ompP’s measurement routines implement the POMP_Task_*, POMP_Utask_*, and
POMP_Taskwait_* calls. An important observation is that during execution a

POMP_Task_enter(...)

#pragma omp task

{
POMP_Task_begin(...)

// user’s task code
POMP_Task_end(...)

}
POMP_Task_exit(...)

(a) POMP instrumentation for the task

construct.

POMP_Taskwait_enter(...)

#pragma omp taskwait

POMP_Taskwait_exit(...)

(b) POMP instrumentation for the
taskwait construct.

Fig. 3: Instrumentation for tasking related constructs.

task construct is best represented by two separate entities: one for task creation
and one for task execution. Following this idea, we create two ompP regions for
each source code task construct, one of type TASK for task creation and one of
type TASKEXEC to record profiling data related to task execution. In the termi-
nology of the OpenMP specification, TASK corresponds to the task construct,
while TASKEXEC corresponds to the task region. UTASK and UTASKEXEC are used
for untied tasks.

void main(int argc, char* argv[]) { void mytask() {
#pragma omp parallel { sleep(1);

int i; }
#pragma omp single nowait {

for(i=0; i<5; i++) {
#pragma omp task /* if(0) */ {

mytask();

}
}

}
}

Fig. 4: (Pseudo) source code with tasking.

Consider the simple code example in Fig. 4 and its corresponding callgraph
as delivered by ompP in Fig. 5. Task creation occurs inside the single region
while task get executed when threads hit the implicit barrier at the end of
the parallel construct. If, alternatively, an if(0) clause is specified, tasks are

PARALLEL +-R00001 PARALLEL +-R00001

SINGLE |-R00002 SINGLE +-R00002

TASK | +-R00003 TASK +-R00003

TASKEXEC +-R00003 TASKEXEC +-R00003

Fig. 5: Dynamic callgraph of the code shown in Fig. 4 (left). The right side shows
the callgraph when an if() clause is present and evaluates to false.

executed immediately and this is visible in the callgraph, where the TASKEXEC is
a child of the TASK node. 3

Support for monitoring untied tasks is incomplete at this time. We chose to
offer the user the option to disable any monitoring of untied tasks completely
or to monitor them in the same way as tied tasks (assuming that the executing
thread does not change during the lifetime of a task). Without a way to observe
the suspension and resumption of tasks at general task scheduling points, this
seems to be the best we can do.

3.3 Profiling Data Analysis and Presentation

Flat profiles and callgraph profiles are recorded for the [U]TASK, [U]TASKEXEC,
and TASKWAIT regions. Fig. 6 shows the possible immediate dynamic nesting of
these three region types and their interpretation. The location of the [U]TASKEXEC
region in the callgraph allows the analysis of when tasks were executed dynami-
cally. The execution might happen nested in the [U]TASK region if an if() clause
evaluates to false. If tasks are executed at a TASKWAIT region, this will also be
indicated by the dynamic nesting and if threads execute tasks while at the im-
plicit exit barrier of a parallel or workshare construct, the TASKEXEC region will
be shown as a child region of this parallel or workshare region.

One of ompP’s more advanced features is its overhead analysis. When threads
execute a worksharing region with an imbalanced amount of work, the waiting
time of threads in the implicit exit barrier of that worksharing construct is
measured by ompP and reported as load imbalance overhead. A total of four
overhead classes are defined: load imbalance; synchronization overhead; limited
parallelism; and thread management. The reporting of the overhead relies on
the fact that OpenMP threads do not perform useful work on behalf of the
application in certain program phases (such as when entering a critical section
or at implicit or explicit thread barriers).

This assumption is no longer valid with OpenMP 3.0 when tasking is used.
When threads hit an implicit barrier, instead of idling they can do useful work by
executing ready tasks. To account for this, we modified the overhead reporting
3 All experiments reported in this paper have been performed on a Linux machine

using a beta version of Intel’s C/C++ compiler suite v11.0.044, which supports
tasking. We suspect this implementation might be not be fully optimized but it was
a sufficient as a vehicle to test the feasibility of our monitoring approach, as this
paper is concerned about functionality and not performance.

inner region

outer region [U]TASK TASKEXEC TASKWAIT

[U]TASK – × –
TASKEXEC × × ×
TASKWAIT – × –

+-....

|- outer
|- inner
+-....

Fig. 6: Possible nesting of the tasking related region types in ompP. A dash
symbol (–) indicates a nesting that can not occur, × indicates valid nestings.
The [U]TASK–TASKEXEC nesting signifies immediate execution either because the
if() clause evaluates to false or runtime decided not to defer the execution for
other reasons such as resource exhaustion.

of ompP by subtracting from the overheads the time spent executing tasks. The
required timing data is available from the callgraph recorded by ompP (we know
that a [U]TASKEXEC happens in the context of the implicit exit barrier) and from
the callgraph profiles recorded for the task execution on a per-thread basis.

Overheads wrt. each individual parallel region:

Total Ovhds (%) = Synch(%) + Imbal (%) + Limpar (%) + Mgmt (%)

R00001 6.00 1.00 (16.68) 0.00 (0.00) 1.00 (16.66) 0.00 (0.00) 0.00 (0.02)

Overheads wrt. whole program:

Total Ovhds (%) = Synch(%) + Imbal (%) + Limpar (%) + Mgmt (%)

R00001 6.00 1.00 (15.64) 0.00 (0.00) 1.00 (15.63) 0.00 (0.00) 0.00 (0.02)

SUM 6.00 1.00 (15.64) 0.00 (0.00) 1.00 (15.63) 0.00 (0.00) 0.00 (0.02)

Fig. 7: Overhead analysis report corresponding to the code shown in Fig. 4

An example of an overhead report that takes task execution into account is
shown in Fig. 7. This overhead report corresponds to the code fragment shown
in Fig. 4, the application executes with two threads and creates 5 tasks with an
execution time of 1 second each. As shown, ompP correctly accounts for the task
execution by reporting the imbalance overhead as 1.0 second due to the uneven
distribution of tasks to threads.

To allow the application developers to analyze when tasks get executed fur-
ther, we added a new timing category taskT to OpenMP parallel regions and
worksharing regions. Fig. 8 shows the profile of a parallel region. While at the
implicit exit barrier of the parallel construct, thread 0 spent 3.0 seconds execut-
ing tasks, while thread 1 spent 2.0 seconds, 1.0 second remains as the waiting
time of thread 1, as shown in the exitBarT column.

R00001 main.c (15-26) PARALLEL

TID execT execC bodyT exitBarT startupT shutdwnT taskT

0 3.00 1 0.00 0.00 0.00 0.00 3.00

1 3.00 1 0.00 1.00 0.00 0.00 2.00

SUM 6.00 2 0.00 1.00 0.00 0.00 5.00

Fig. 8: Flat region profile, showing the time threads spend executing tasks while
waiting at the implicit exit barrier of the parallel region. This data corresponds
to the code shown in Fig. 4 when executed with two threads.

4 Related Work

Opari and the POMP interface are the basis of OpenMP monitoring for sev-
eral performance tools for scientific computing like TAU [8], KOJAK [10], and
Scalasca [4]. To the best of our knowledge, there is currently no work under way
to support tasking within these projects [2]. However, we believe that our work
on extending Opari and the experience we gathered with respect to supporting
tasking in the monitoring system will be of use for adding tasking support for
these tools.

Sun has developed an extension to their proposed performance profiling
API [5] for OpenMP and is supporting tasking in the new version of their perfor-
mance tool suite. [1]. The nature of this interface and Sun’s implementation are
different from ompP’s approach (callbacks and sampling vs. direct measurement)

5 Conclusion and Future Work

We have described our experiences in supporting tasking in a measurement based
profiler for OpenMP. We have made additions to a source code instrumentation,
measurement, and result presentation stages of the tool.

With respect to measurement, a fundamental difference arose in the way
waiting time at implicit barriers was accounted for in the overhead analysis.
The modified data reporting allows users to see which threads execute tasks at
which point in the application. Due to the dynamic execution characteristics of
OpenMP with tasking, we believe this capability is important both for perfor-
mance considerations as well as a pedagogical tool for people learning to use
OpenMP tasking.

We found that monitoring overhead directly correlates with the frequency of
monitored events. With very frequent, short lived tasks overheads can be sub-
stantial. However, such an application is unlikely to scale or to perform well even
without any monitoring. For reasonably sized tasks we found that monitoring
overhead can be expected to be less than 5 percent of execution time.

For the future, work is planned in several directions. Clearly, how untied tasks
are handled currently is unsatisfactory. However, without notifications of task
switches form the runtime, the options for a source code instrumentation based

tool like ompP are very limited. The most promising solution for this issue seems
to lie in an incorporation of the profiling API [5] for providing such a notification
mechanism. The currently limited adoption of this API by vendors is a practical
problem, however.

References

1. OpenMP 3.0: Ushering in a new era of parallelism. Birds of a Feather meeting at
Supercomputing 2008.

2. Personal communication at supercomputing 2008.
3. Shirley Browne, Jack Dongarra, N. Garner, G. Ho, and Philip J. Mucci. A portable

programming interface for performance evaluation on modern processors. Int. J.
High Perform. Comput. Appl., 14(3):189–204, 2000.

4. Markus Geimer, Felix Wolf, Brian J. N. Wylie, and Bernd Mohr. Scalable parallel
trace-based performance analysis. In Proceedings of the 13th European PVM/MPI
Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface (EuroPVM/MPI 2006), pages 303–312, Bonn, Germany,
2006.

5. Marty Itzkowitz, Oleg Mazurov, Nawal Copty, and Yuan Lin. An OpenMP runtime
API for profiling. Accepted by the OpenMP ARB as an official ARB White Paper
available online at http://www.compunity.org/futures/omp-api.html.

6. J. Levon. OProfile, A system-wide profiler for Linux systems. Homepage: http:
//oprofile.sourceforge.net.

7. Bernd Mohr, Allen D. Malony, Sameer S. Shende, and Felix Wolf. Towards a
performance tool interface for OpenMP: An approach based on directive rewriting.
In Proceedings of the Third Workshop on OpenMP (EWOMP’01), September 2001.

8. Sameer S. Shende and Allen D. Malony. The TAU parallel performance system.
International Journal of High Performance Computing Applications, ACTS Col-
lection Special Issue, 2005.

9. Josef Weidendorfer, Markus Kowarschik, and Carsten Trinitis. A tool suite for
simulation based analysis of memory access behavior. In ICCS 2004: 4th Interna-
tional Conference on Computational Science, volume 3038 of LNCS, pages 440–447.
Springer, 2004.

10. Felix Wolf and Bernd Mohr. Automatic performance analysis of hybrid
MPI/OpenMP applications. In Proceedings of the 11th Euromicro Conference
on Parallel, Distributed and Network-Based Processing (PDP 2003), pages 13–22.
IEEE Computer Society, February 2003.

