
Capturing and Visualizing Event Flow Graphs of
MPI Applications

Karl Fürlinger1 and David Skinner2

1 Computer Science Division, EECS Department
University of California at Berkeley

Soda Hall 593, Berkeley CA 94720, U.S.A.
fuerling@eecs.berkeley.edu

2 Lawrence Berkeley National Lab
Berkeley, California
deskinner@lbl.gov

Abstract. A high-level understanding of how an application executes
and which performance characteristics it exhibits is essential in many
areas of high performance computing, such as application optimization,
hardware development, and system procurement.

Tools are needed to help users in uncovering the application characteris-
tics, but current approaches are unsuitable to help develop a structured
understanding of program execution akin to flow charts. Profiling tools
are efficient in terms of overheads but their way of recording performance
data discards temporal information. Tracing preserves all the temporal
information but distilling the essential high level structures, such as ini-
tialization and iteration phases can be challenging and cumbersome.

We present a technique that extends an existing profiling tool to capture
event flow graphs of MPI applications. Event flow graphs try to strike a
balance between the abundance of data contained in full traces and the
concise information profiling tools can deliver with low overheads.

We describe our technique for efficiently gathering an event flow graph
for each process of an MPI application and for combining these graphs
into a single application-level flow graph. We explore ways to reduce the
complexity of the graphs by collapsing nodes in a step-by-step fashion
and present techniques to explore flow graphs interactively.

1 Introduction

Understanding performance characteristics of applications at a high level is es-
sential in many diverse areas of high performance computing. Application de-
velopers, hardware engineers, or computing center support and procurement
experts use tools to establish that the application uses the available resources
efficiently or if there is potential for improvement.

Many techniques made available by current tools are insufficient for getting a
high-level understanding of the “execution flow” of an application. Most perfor-
mance tools can be categorized into either profiling or tracing. Profiling tools are

efficient in terms of overheads but their way of recording performance data dis-
cards temporal information. Tracing preserves all the temporal information but
uncovering the essential high level structures, such as initialization and iteration
phases can be challenging and cumbersome.

We present a technique that extends an existing profiling tool to capture
event flow graphs of MPI applications with very low overhead. Event flow graphs
try to strike a balance between the abundance of data contained in full traces
and the concise information profiling tools can deliver with low overheads. The
graphs are similar in concept to flow charts used to describe algorithms and
design software systems.

We describe our technique for efficiently gathering an event flow graph for
each process of an MPI application and for combining multiple graphs into a
single application-level flow graph. We explore ways to reduce the complexity of
the graphs by collapsing nodes in a step-by-step fashion and present techniques
to explore flow graphs interactively.

The rest of this paper is organized as follows: In Sect. 2 we give a short
overview of the integrated performance monitoring (IPM) tool that we extended
to capture event flow graphs. In Sect. 3 we describe our approach to recording
the flow graphs in MPI applications, and in Sect. 4 we describe techniques for
the interactive visualization and exploration of the graphs and apply the tool to
some example applications. In Sect. 5 we survey related work and in Sect. 6 we
conclude and discuss areas for future work.

2 Application Profiling and Workload Characterization
with IPM

IPM is a profiling and workload characterization tool for MPI applications. IPM
achieves its goal of minimizing monitoring overhead by recording performance
data in a fixed-size hash table resident in memory and carefully optimizing time-
critical operations. At the same time, IPM offers very detailed and user-centric
performance metrics. IPM’s performance data is delivered as an XML file that
can subsequently be used to generate HTML pages, avoiding the need for special
graphical user interfaces. Pairwise communication volume between processes,
communication time breakdown across ranks, MPI operation timings, and MPI
message sizes (buffer lengths) are some of IPM’s most widely used features.
IPM is available from http://ipm-hpc.sourceforge.net for download and is
distributed under the LGPL license.

3 Recording Event Flow Graphs of MPI applications

We assume the following general model of performance monitoring for MPI ap-
plications: An MPI application is composed of n processes each identified by an
integer in [0, . . . , n− 1], its rank. A set of events Ei ⊆ E happen in each process
i. We do not further formally specify what the events are, but we assume they

occur at a certain time and have duration. Each event e has an associated signa-
ture σ(e) ∈ S which captures the characteristics we are interested in. σ : E 7→ S
is the signature function. Concretely we think of a signature σ(e) as a k-tuple
σ(e) = (σ1(e), σ2(e), . . . , σk(e)), where each σj() is a signature component. Use-
ful components of signature functions are listed in Fig. 1.

Signature component Signature function Data type Typical Size (#bits)

Wallclock time time(e) floating point 32/64
Sequence number seq(e) integer 32
Type of MPI call call(e) integer 8
Data size size(e) integer 32
Data address address(e) integer 64
Own rank rank(e) integer 32
Partner rank partner(e) integer 32
Callsite ID csite(e) integer 16
Program region region(e) integer 8

Fig. 1. Components of an event signature function.

Our goal for performance observation is to get an event inventory of an ap-
plication (i.e., understand the events that happened and their characteristics)
by associating performance data (number of occurrences, statistics on the du-
ration) with event signatures. If the signature includes time() this essentially
models tracing; if it does not we have a model for profiling.

IPM is a profiling tool and for efficiency reasons we would like to keep the
signature space much smaller than the event space (|E| >> |S|). In this case the
signature function is not injective and performance data can be envisioned as a
table indexed by the signature, with a number of columns for the statistics we
are interested in. In IPM we implement this indexing using a hash table resident
in memory, the hash keys are 64 to 128 bits long and the hash values are on the
order of 20 bytes big.

Evidently, if the signature does not include time() or seq() we lose the tem-
poral dimension of the performance data, and with it the ability to understand
which events happened before or after each other from the measured data. In
this paper we show that some important temporal information can be recovered
by keeping track of the sequence of event signatures. We call the resulting graphs
which are akin to control flow graphs event signature flow graphs or simply event
flow graphs.

To construct a flow graph consider an application executing with n processes
and let Ei = {e0, e1, . . .} be the sequence of events at rank i, σ : Ei 7→ Si be the
signature function at rank i, and s0

i ∈ Si some initial signature value. Then σ′

with

σ′(e0) = (s0
i , σ(e0))

σ′(ei) = (σ(ei−1), σ(ei)) (i > 0)

is the history signature for σ. The directed weighted graph G = (Ni, Li, wi, s
0
i)

with

Ni = {σ(ei)} ei ∈ Ei

Li = {σ′(ei)} ei ∈ Ei

wi : Li 7→ N wi(l) = |{ei : σ′(ei) = l}| l ∈ Li

is the event signature flow graph for rank i and s0
i is the start node of the graph.

An example flow graph is shown in Fig. 3. Nodes correspond to MPI calls, edges
between the nodes correspond to transitions between them.

3.1 Merging Graphs from Multiple Processes

Event flow graphs form different processes can be merged in a straightforward
way to form a multigraph (a graph with multiple edges between a pair of nodes).
We build the merged graph by identifying similar nodes among the graphs (i.e.,
having identical σ(ei) with respect to some equality criterion) and inserting
the edges and weights from each depending on the signature component we are
concerned with.

The best way for identifying two event signatures σ(ei) as being identical
depends on the signature components:

Signature component Equality test

Type of MPI call Exact equality
Data size Exact equality or approximate (same magnitude) equality
Data address Exact equality
Own rank Discarded, since we merge across ranks
Partner rank Equality of relative ranks
Callsite ID Equality in unified calltrees
Program region Exact equality

Fig. 2. Unification of signature components across MPI processes.

Identifying identical callsite IDs requires us to unify the calltree of each rank.
During the execution a calltree is recorded (nodes are the callsites of MPI calls)
and numerical IDs are assigned consecutively. Depending on the sequence in
which functions are executed, the same callsites can be assigned different IDs
on different processes. A unification step which IPM performs after the program
terminates guarantees a consistent assignment of callsite IDs.

For comparing ranks we use differences (relative ranks) since in many appli-
cations parallelism is exploited in the form 2-D or 3-D domain decomposition
and the MPI communication pattern is often based on the topological position of
a processor (i.e, nearest neighbor communication in a grid). For this reason it is
most often convenient to convert the absolute partner rank of a communication
event into a relative rank (e.g., a MPI Send to processor with relative rank -4).

One further simplification step can be performed on the edges between nodes.
To simplify presentation and understanding of the graphs we cluster edges with
the same multiplicity or weight together.

An example for a resulting application level event flow graph for a very simple
application is shown in Fig. 3. The program is executed with four MPI processes,
where ranks 0, 2 perform a receive operation and ranks 1, 3 perform a send.

void main(int argc, char* argv[]) {
MPI_Init(...);

MPI_Comm_size(...);

MPI_Comm_rank(..., &myrank);

for(i=0; i<10; i++) {
if(myrank is odd)

MPI_Send(10 doubles to rank -1);

else

MPI_Recv(10 doubles from rank +1);

}
MPI_Finalize();

}

MPI_Recv 80 (+1)

9x (0,2)

MPI_Finalize

1x (0,2)

MPI_Send 80 (-1)

1x (1,3)9x (1,3)
MPI_Comm_size MPI_Comm_rank

1x (0-3)

1x (0,2)

1x (1,3)MPI_Init
1x (0-3)

Fig. 3. A simple MPI program, executed with four MPI processes and its accompanying
merged event flow graph using relative rank addressing.

3.2 Implementation in IPM

We have implemented the event flow recording scheme as described in Sect. 3 in
our profiling tool IPM. IPM keeps event statistics (number of occurrences, total
duration, and so on) in a hash table and the hash key derived from the MPI
communication events correspond to the event signatures. To record the event
flow information, the hash key is extended to contain both the current signature
σ(ei) as well as the signature of the previous event σ(ei−1). The previous event’s
signature is recorded in a variable and updated on each insert into the hash
table.

Using this scheme event statistics are now correlated with pairs of event sig-
natures that form the edges of the event flow graph. Upon program termination,
the hash table is inspected and the flow graph is reconstructed from the hash
table by looking for matching pairs of event flow edges.

4 Visualizing and Exploring Event Flow Graphs

The flow-graphs are recorded by IPM on a per-rank basis and written to a
file. The merging and unification step is performed by a perl script in a post-
processing step which generates a number of event flow graph files suitable for
input into Graph::Easy [1] and further layout by dot [3].

Consider the table in Fig. 4. It shows the number of events in a full trace of
several applications of the NAS parallel benchmark suite as well as the number
of nodes in the event flow graph using the signature components indicated in the
first column. These application contain no developer-provided phase markers and
the MPI call type can be derived from the callsite ID, so size(), partner(), csite()
provide the largest signature space and a subset of these signature functions will
generally lead to fewer nodes in the flow graphs.

Evidently, the callsite ID is essential to achieve a large signature space. In
fact, adding partner() and size() components does not add more nodes to the
flow graphs for all but one application (MG). For MG both the communication
partner and the transmit data size need to be added to differentiate between all
events.

Method BT CG EP FT IS LU MG SP

Full Trace 29856 20184 36 85 165 255213 8988 49828

Event Flow Graph:
size(), partner(), csite() 404 240 36 45 57 277 2796 352
size(), partner() 184 72 28 36 45 93 236 124
size(), csite() 404 240 36 45 57 277 2644 352
partner(), csite() 404 240 36 45 57 277 1140 352
size() 76 60 28 36 45 75 220 76
partner() 76 48 24 32 41 56 60 60
csite() 404 240 36 45 57 277 852 352

Fig. 4. Number of events in the full traces and number of nodes in the event flow
graphs for the NAS parallel benchmark suite (size A, 4 processors).

Fig. 5 shows the flow graph of the IS application. For this small application
the entire flow graph is easily visualized. For larger applications the direct ap-
proach becomes infeasible. Considering the results from Fig. 4, we decided to
focus the on methods to interactively explore the event flow graphs along the
callsite dimension by developing a combined calltree-eventgraph display.

The user is presented with a calltree display alongside with a portion of the
flowgraph which depends on the node selected in the calltree. An example for

1x MPI_Irecv/-1 cs=19

1x MPI_Send/+1 cs=16

1x (1-2)

1x MPI_Wait/-1 cs=20
1x (3)

1x (1-2) 1x MPI_Reduce/0 cs=17

1x (0)

1x (1-3) 1x MPI_Finalize cs=18
1x (0-3)

1x MPI_Reduce/0 cs=14 1x (1-3)

1x (0)

1x MPI_Comm_rank cs=4 1x MPI_Comm_size cs=5
1x (0-3)

1x MPI_Allreduce cs=7
1x (0-3)

1x MPI_Alltoall cs=8
1x (0-3)

1x MPI_Alltoallv cs=9

10x MPI_Allreduce cs=11

1x (0-3)

10x MPI_Alltoall cs=12
10x (0-3)

10x MPI_Alltoallv cs=13

10x (0-3)

1x (0-3)

9x (0-3)

1x (0-3)
1x MPI_Init cs=3

1x (0-3)

Fig. 5. Full event flow graph of the IS application from the NAS parallel benchmark
suite.

this is shown in Fig. 6. The leafes of the calltree on the left correspond to the
MPI events that comprise the flowgraph on the right.

Assume a user selects an internal node foo() of the calltree. Then there is
effectively a partitioning of the flowgraph nodes into three sets: (1) nodes that
are immediate children of the selected node, (2) those that are children but not
immediate children, and (3) all other nodes.

Set (1) corresponds to MPI functions called directly from foo() (i.e, leaves
one level below foo(); these nodes and their transitions are shown directly in the
flowgraph display to the right. Nodes in set (2) correspond to functions called
from functions called from foo() (leaves two or more levels below foo()). Those
nodes are replaced by a representative, which is the child function called from
foo() that leads to their execution. Nodes in set (3) are not displayed at all
unless there is a transition to a visible node (from sets (1) or (2)). In this case
the node is displayed with a dotted border and a dotted line, indicating a control
flow coming from the “outside”.

An example of this display technique is shown in Fig. 6. This method is very
effective at narrowing down the set of nodes in the flow graph to a manageable
set for interactive exploration and understanding of application code.

5 Related Work

Control flow graphs are an important topic in the area of code analysis, gener-
ation, and optimization. In that context, CFGs are usually constructed based
on a compiler’s intermediate representation (IR) and are defined as directed
multi-graphs with nodes being basic blocks (single entry, single exit) and nodes
representing branches that a program execution may take. The difference to the
CFGs in our work is primarily twofold. First, the nodes in our graphs are not
basic blocks but communication events. Second, the edges in our graphs record
transitions that have actually happened during the execution and also contain
a count that shows how often the transition occurred.

Dragon [2] is a performance tool from the OpenUH compiler suite. It can
display static as well as dynamic performance data such as the calltree and con-
trol flow graph. The static information is collected from OpenUH’s analysis of
the source code, while the dynamic information is based on the feedback guided
optimization phase of the compiler. In contrast to our approach, the displays
are based on the compiler’s intermediate representation of source code. The el-
ements of our visualization are the constructs of the user’s model of execution

Fig. 6. Combined calltree-controlflow visualization. The user selects a node on the
calltree to the left and depending on the selection only a subset of the event flow graph
is presented on the right.

to contribute to a high-level understanding of the program execution character-
istics.

The work of Preissl et al. [5] tries to detect recurring patterns of communica-
tion events for optimization purposes. Events are recorded as an array of 32-bit
integer values (i.e., a trace) and repeating sequences of events are searched for by
either a convolution or suffix-tree based method. The identified and matched re-
peating sequences, together with source code analysis using Rose [6], are the basis
for source code transformations such as replacing a series of point to point op-
erations with the corresponding collective. Compared to their method, our tech-
nique avoids the overhead of generating, storing, and analyzing traces. Instead
our technique of recording the execution control flow directly exposes repetitive
structures as loops in the flow graphs.

Finally, the work of Noeth [4] shares some similarities with our approach. In
this trace compression scheme, region descriptors are applied to perform both
intra-node and inter-node compression. Although this approach is able to reduce
traces from applications employing regular communication patterns to near con-
stant size independent of the number of nodes, runtime overhead is incurred for
establishing and maintaining the region descriptors. In contrast, our approach
has negligible cost at runtime, while we don’t guarantee that the trace can be re-
covered completely. In fact, the potential to recover the original trace employing
node ordering heuristics is part of our ongoing work.

6 Conclusion

We have discussed a technique to efficiently gather an event flow graph from
MPI applications. Nodes in the graph are representations of MPI communica-
tion events and edges represent the number of transitions between them. Event
flow graphs try to strike a balance between the abundance of data contained in
full traces and the concise information profiling tools can deliver with low over-
heads. The graphs are conceptually similar to flow charts used in algorithm and
application development. We presented ideas to reduce the complexity of the
graphs by collapsing nodes in a step-by-step fashion and presented techniques
to explore flow graphs interactively.

Future work is planned with respect to several directions. First, while timing
statistics are already recorded for each edge of the flow graph, they are cur-
rently not used in the visual display. It should be straighforward to develop a
coloring scheme to color nodes according to MPI communication time and the
data volume sent or received. This would draw the user’s attention to the most
interesting parts of the graph for optimization purposes.

As a bigger step we plan to explore the usability of the flow graphs to perform
MPI process clustering at petascale. With very large numbers of MPI processes
used at that scale, performance data visualization that involves the rank ID as
a dimension becomes impractical or even impossible. An automated clustering
of ranks into a small number of processes that qualitatively exhibit the same
behavior would be a solution to this problem. Another area for future exploration

is the application of techniques from graph theory to our flow graphs. Examples
include cycle detection and extraction to automatically delineate computational
and iterative phases.

References

1. The graph::easy web page: http://search.cpan.org/~tels/Graph-Easy/.
2. Oscar Hernandez, Chunhua Liao, and Barbara Chapman. Dragon: A static and

dynamic tool for OpenMP. In Proceedings of the Workshop on OpenMP Applications
and Tools (WOMPAT 2004), pages 53–66, 2004.

3. Eleftherios Koutsofios and Stephen C. North. Drawing graphs with dot. Murray
Hill, NJ, October 1993.

4. Michael Noeth, Frank Mueller, Martin Schulz, and Bronis R. de Supinski. Scalable
compression and replay of communication traces in massively parallel e nviron-
ments. In Proceedings of the 21th International Parallel and Distributed Processing
Symposium (IPDPS ’07), pages 1–11. IEEE, 2007.

5. Robert Preissl, Martin Schulz, Dieter Kranzlmüller, Bronis R. Supinski, and
Daniel J. Quinlan. Using MPI communication patterns to guide source code trans-
formations. In ICCS ’08: Proceedings of the 8th international conference on Compu-
tational Science, Part III, pages 253–260, Berlin, Heidelberg, 2008. Springer-Verlag.

6. Daniel J. Quinlan. ROSE: Compiler support for object-oriented frameworks. Parallel
Processing Letters, 10(2/3):215–226, September 2000.

