
Performance Analysis of Shared-Memory

Parallel Applications using Performance
Properties

Karl Fürlinger and Michael Gerndt

Technische Universität München
Institut für Informatik

Lehrstuhl für Rechnertechnik und Rechnerorganisation
{Karl.Fuerlinger, Michael.Gerndt}@in.tum.de

Abstract. Tuning parallel code can be a time-consuming and difficult
task. We present our approach to automate the performance analysis of
OpenMP applications that is based on the notion of performance prop-
erties. Properties are formally specified in the APART specification lan-
guage (ASL) with respect to a specific data model. We describe a data
model for summary (profiling) data of OpenMP applications and present
performance properties based on this data model. We evaluate the us-
ability of the properties on several example codes using our OpenMP
profiler ompP to acquire the profiling data.

1 Introduction

Tuning parallel code can often be a time-consuming and complex task. Nonethe-
less, it is generally important for application developers that their code uses the
available resources efficiently and delivers close-to-optimal performance, since
improving performance is commonly the reason exploiting parallelism in the
first place.

Many tools have been devised that application developers employ to analyze
the performance of their code. First it is necessary to decide whether performance
problems actually exist in the code. For the list of potential tuning targets it
is then also necessary to identify the reason for the inefficiency. Knowing the
reason then allows the developer to modify the code in order to remedy the
performance problem.

The process of code tuning outlined above, also sometimes referred to as
the measure–analyze–modify cycle [1, 13], requires the application developer to
have detailed knowledge of how the application’s code finally corresponds to
performance delivered on some parallel machine. Various levels of abstraction
added by operating system, communications middle-ware and parallel program-
ming languages complicate the analysis of this correspondence. Furthermore,
programming languages, communications middle-ware and most notably the par-
allel computing systems themselves evolve and change their characteristics over
time and application developers need to keep track of these changes. Tradeoffs

TUMuser
New Stamp



and rules-of-thumb that might be applicable for one generation of a machine can
be inadequate for the next.

Performance tool builders therefore seek to support application developers by
automating the process of performance analysis and tuning. Automation can be
employed at every stage of the measure–analyze–modify cycle. While supportive
tools for performance data measurement are well-understood and in widespread
use (e.g., tracing and profiling tools), this is less so for approaches automating
the analysis step, let alone the tuning step.

In this work we describe our advances towards automating the analysis phase
of the tuning cycle, specifically for shared-memory parallel programs. Our work
is based on the notion of performance properties that formally describe situa-
tions of inefficiency. By specifying what constitutes a performance property, a
performance specialist can encapsulate domain- and platform specific knowledge
that an application developer often neither has, nor wants to care about. Per-
formance properties can also identify the reason for the inefficiency and convey
hints on successful tuning strategies.

The rest of this paper is organized as follows: in Sect. 2 we give a general
overview of our performance analysis approach based on performance properties.
Then, in Sect. 3 we present the properties for shared-memory parallel programs
and describe the data model on which the properties rely. In Sect. 4 we evaluate
our approach on application examples from a test suite, designed for testing
performance analysis tools (the ATS [12]) and from the OpenMP source code
repository [2]. We present related work in Sect. 5 and summarize and discuss
directions for future work in Sect. 6.

2 Specification of Performance Properties

Performance properties describe situations of inefficient execution. Within the
APART (Automated Performance Analysis: Real Tools) working group, a lan-
guage for the formal specification of performance properties was developed (the
APART specification language, ASL [3, 7]).

A typical property specification is shown in Fig. 1. The specification has three
parts:

– A specification of the condition that needs to be fulfilled in order for the
property to hold.

– An expression that gives the confidence that the property holds.
– An expression that gives the severity of the property, i.e., that quantifies the

impact on the performance that a particular property represents.

Condition, confidence and severity are expressed with respect to entities of a
specific data model. The data model contains abstractions like regions, perfor-
mance summary data structures and events for a particular programming envi-
ronment (i.e., there might be a different data model for OpenMP and MPI, but
a combined model for mixed-parallel code is possible as well). In Fig. 1 the data
model is represented by the SeqPerf data structure, which contains summary



property MpiOvhdInSeqRegInProc (SeqPerf pD)

{

condition : pD.mpiT > 0;

confidence : 1.0;

severity : pD.mpiT/RB(pD.exp);

}

Fig. 1. The ASL specification of the MpiOvhdInSeqRegInProc property.

(i.e., profiling) data of sequential (not thread-parallel) regions. The condition

and severity specifications refer to the mpiT data member that gives the total
time spent in MPI calls in a particular region. RB() refers to the ranking basis
of the experiment, which allows the determination of the severity based on the
time lost in a particular construct. In our case the ranking basis refers to the
total execution time of the application. For online-performance analysis where
the application execution is assumed to proceed in repeating phases, it could,
however, also refer to the duration of a single phase.

ASL also contains mechanisms that allow the easy formulation of new prop-
erties based on existing ones (meta-properties and property templates). This
allows for a compact and flexible specification of properties by a performance
specialist. For details please refer to [3, 7].

3 Properties for Shared-Memory Parallel Programs

A number of properties have previously been devised for shared-memory parallel
programs [4]. Here we take up that work and analyze what performance data
can practically be derived from the execution of OpenMP programs and which
properties can be based on that data.

In our work, we rely on instrumentation of OpenMP programs that utilizes
the work of Mohr et al. [10]. Since OpenMP lacks a standard performance mea-
surement interface, Mohr et al. designed such an interface (called POMP) that
exposes OpenMP program execution events to performance analysis tools. In the
POMP proposal functions are called when OpenMP regions are being entered
or exited, for example POMP Parallel fork and POMP Parallel join are called
immediately before and after a parallel construct.

The POMP * calls are inserted by the source-to-source instrumenter Opari [11].
A performance tool implements the POMP * functions and is thus able to observe
the program’s execution and record performance characteristics as needed. We
implemented our own POMP-based profiler called ompP [6] to derive the neces-
sary profiling data for the data model presented below.



ParPerf {
Region *reg // The region for which the summary is collected

Experiment *exp // The experiment where this data belongs to

int threadC // Number of threads that executed the region

double execT[] // Total execution time per thread

double execC[] // Total execution count per thread

double exitBarT[] // Time spent in the implicit exit barrier

double singleBodyT[] // Time spent inside a single construct

int singleBodyC[] // Execution count in a single construct

double enterT[] // Time spent waiting to enter a construct

int enterC[] // Number of times a threads enters a construct

double exitT[] // Time spent to exit a construct

int exitC[] // Number of times a thread exits a construct

double sectionT[] // Time spent inside a section construct

int sectionC[] // Number of times a section construct is entered

double startupT[] // Time required to create a parallel region

double shutdownT[] // Time required to destroy a parallel region

}

Fig. 2. The ParPerf structure contains summary (profiling) data for OpenMP con-
structs.

3.1 Data Model

Our ASL data model used for OpenMP shared-memory parallel programs is
represented by the ParPerf structure holding summary data for program regions
corresponding to OpenMP constructs in the target application. The ParPerf

structure is shown in Fig. 2 in C/C++/Java-like syntax, it has the following
entries

– exp points to a data structure that gives general information about the
conducted experiment such as when the experiment started and when it
ended.

– reg points to a Region structure that holds static information about the
regions of the program (such as begin and end line numbers and the type of
the region, e.g., PARALLEL, CRITICAL, SINGLE, . . . ).

– threadC gives the number of threads that executed the OpenMP construct.
– The other members of ParPerf hold dynamic performance data in the form

of timings and counts. Not all data members are defined for all region types.
For example singleBodyT is defined only for SINGLE regions. It holds the
time spent inside a single construct. exitBarT is defined for parallel regions
and OpenMP worksharing regions. It represents the time spent inside the
implicit exit barrier added by Opari to measure the load-imbalance in these
constructs1. enterT and exitT are only defined for CRITICAL regions and

1 To measure load-imbalance in a worksharing construct, Opari adds a nowait clause
to the construct and inserts a barrier at the end of the construct.



measure the time required to enter and exit the critical section, respectively.
startupT and shutdownT are only meaningful for PARALLEL regions, these
timings allow the measurement of the time lost due to thread creation and
teardown for parallel regions.

3.2 Property Specification

The ASL performance properties for OpenMP code are defined with respect to
the ParPerf data structure. We describe some of the more important properties
below, other properties that have been defined but are not shown here are All-

ThreadsLockContention,FrequentAtomic,InsufficientWorkInParallel,Un-
parallelizedInSingleRegion, UnparallelizedInMasterRegion, Imbalance-
DueToUnevenSectionDistribution and LimitedParallelismInSections.

ImbalanceAtBarrier This property refers to an explicit OpenMP barrier

directive added by the programmer. The property measures the difference in
arrival time of the individual threads at the barrier. This is usually related to a
situation of load imbalance the threads encounter before arriving at the barrier.
Time waited by the threads at the barrier is lost and is the basis for computing
the severity.

property ImbalanceAtBarrier(ParPerf pd) {
let

min = min(pd.execT[0],...,pd.execT[pd.threadC-1]);

max = max(pd.execT[0],...,pd.execT[pd.threadC-1]);

imbal = max-min;

condition : (pd.reg.type==BARRIER) && (imbal > 0);

confidence : 1.0;

severity : imbal / RB(pd.exp);

}

ImbalanceInParallelRegion This property (like the very similar Imbalance-
InParallelLoop and ImbalanceInParallelSections) measures imbalances of
the parallel construct (or the respective OpenMP work-sharing constructs).
Opari adds an implicit barrier at the end of these constructs, time spent in the
this barrier is accessible via exitBarT.

property ImbalanceInParallelRegion(ParPerf pd) {
let

min = min(pd.exitBarT[0],...,pd.exitBarT[pd.threadC-1]);

max = max(pd.exitBarT[0],...,pd.exitBarT[pd.threadC-1]);

imbal = max-min;

condition : (pd.reg.type==PARALLEL) && (imbal > 0);

confidence : 1.0;

severity : imbal / RB(pd.exp);

}



CriticalSectionContention This property indicates that threads contend for
a critical section. Waiting time for entering or exiting the critical section is
summed-up in enterT and exitT, respectively.

property CriticalSectionContention {
let

enter = sum(pd.enterT[0],...,pd.enterT[pd.threadC-1]);

exit = sum(pd.exitT[0],...,pd.exitT[pd.threadC-1]);

condition : (pd.reg.type==CRITICAL) && ((enter+exit) > 0);

confidence : 1.0;

severity : (enter+exit) / RB(pd.exp);

}

4 Application Examples

In this section we test our approach to automate the performance analysis of
OpenMP applications based on the ATS properties defined in Sect. 3. The ex-
periments were run on a single 4-way Itanium-2 SMP system (1.3 GHz, 3 MB
third level cache and 8 GB main memory), the Intel Compiler version 8.0 was
used.

4.1 APART Test Suite (ATS)

The ATS [12] is a set of test applications (MPI and OpenMP) developed within
the APART working group. The framework is based on functions that generate
a sequential amount of work for a process or thread and on a specification of the
distribution of work among processes or threads. Building on this basis, individ-
ual programs are created that exhibit a certain pattern of inefficient behavior,
for example “imbalance in parallel region”.

The ompP [6] output in Fig. 3 is from a profiling run of the ATS program that
demonstrates the “imbalance in parallel loop” performance problem. Notice the
exitBarT column and the uneven distribution of time with respect to threads
{0,1} and {2,3}.

R00003 LOOP pattern.omp.imbalance_in_parallel_loop.c (15--18)

TID execT execC exitBarT

0 6.32 1 2.03

1 6.32 1 2.02

2 6.32 1 0.00

3 6.32 1 0.00

* 25.29 4 4.05

Fig. 3. The ompP profiling data for the loop region in the ATS program that demon-
strates the ImbalanceInParallelLoop property.



This inefficiency is easily identified by checking the ImbalanceInParallel-

Loop property. The imbalance in exitBarT (difference between maximum and
minimum time) amounts to 2.03 seconds, the total runtime of the program was
6.33 seconds. Therefore the ImbalanceInParallelLoop property is assigned a
severity of 0.32.

This example is typical for a number of load imbalance problems that are eas-
ily identified by the corresponding ASL performance properties. Other problems
related to synchronization are also easily identified.

4.2 Quicksort

Towards a more real-world application example, we present an evaluation in the
context of work performed by Süß and Leopold on comparing several parallel
implementations of the Quicksort algorithm [16]. The code is now part of the
OpenMP source code repository [2] and we have analyzed a version with a global
work stack (called sort omp 1.0 in [16]). In this version there is a single stack
of work elements (sub-vectors of the vector to be sorted) that are placed on and
taken form the stack by threads concurrently. Access to the stack is protected
by two critical sections. The ompP output below shows the profiling data for the
two critical sections.

R00002 CRITICAL cpp_qsomp1.cpp (156--177)

TID execT execC enterT enterC exitT exitC

0 1.61 251780 0.87 251780 0.31 251780

1 2.79 404056 1.54 404056 0.54 404056

2 2.57 388107 1.38 388107 0.51 388107

3 2.56 362630 1.39 362630 0.49 362630

* 9.53 1406573 5.17 1406573 1.84 1406573

R00003 CRITICAL cpp_qsomp1.cpp (211--215)

TID execT execC enterT enterC exitT exitC

0 1.60 251863 0.85 251863 0.32 251863

1 1.57 247820 0.83 247820 0.31 247820

2 1.55 229011 0.81 229011 0.31 229011

3 1.56 242587 0.81 242587 0.31 242587

* 6.27 971281 3.31 971281 1.25 971281

Checking for the CriticalSectionContentionproperty immediately reveals
the access to the stacks as the major source of inefficiency of the program.
Threads content for the critical section, the program spends a total of 7.01
seconds entering and exiting the first and 4.45 seconds for the second section.
Considering a total runtime of 61.02 seconds, this corresponds to a severity of
0.12 and 0.07, respectively.

Süß and Leopold also recognized the single global stack as the major source
of overhead and implemented a second version with thread-local stacks.

Profiling data for the second version appears below. In this version the over-
head with respect to critical sections is clearly smaller than the first one (enterT



and exitT have been improved by about 25 percent) The overall summed run-
time reduces to 53.44 seconds, an improvement of about 12 percent, which is
in line with the results reported in [16]. While this result demonstrates a nice
performance gain with relatively little effort, our analysis clearly indicates room
for further improvement.

R00002 CRITICAL cpp_qsomp2.cpp (175--196)

TID execT execC enterT enterC exitT exitC

0 0.67 122296 0.34 122296 0.16 122296

1 2.47 360702 1.36 360702 0.54 360702

2 2.41 369585 1.31 369585 0.53 369585

3 1.68 246299 0.93 246299 0.37 246299

* 7.23 1098882 3.94 1098882 1.61 1098882

R00003 CRITICAL cpp_qsomp2.cpp (233--243)

TID execT execC enterT enterC exitT exitC

0 1.22 255371 0.55 255371 0.31 255371

1 1.16 242924 0.53 242924 0.30 242924

2 1.32 278241 0.59 278241 0.34 278241

3 0.98 194745 0.45 194745 0.24 194745

* 4.67 971281 2.13 971281 1.19 971281

5 Related Work

Several approaches for automating the process of performance analysis have been
developed.

Paradyn’s [9] Performance Consultant automatically searches for performance
bottlenecks in a running application by using a dynamic instrumentation ap-
proach. Based on hypotheses about potential performance problems, measure-
ment probes are inserted into the running program. Recently MRNet [15] has
been developed for the efficient collection of distributed performance data. How-
ever, the search process for performance data is still centralized.

The Expert [17] performs an automated post-mortem search for patterns of
inefficient program execution in event traces. As in our approach, data collection
for OpenMP code is based on POMP interface. However, Expert performs tracing
which often results in large data-sets and potentially long analysis time, while
we only collect summary data in the form of profiles.

Aksum [8, 5], developed at the University of Vienna, is based on a source code
instrumentation to capture profile-based performance data which is stored in a
relational database. The data is then analyzed by a tool implemented in Java
that performs an automatic search for performance problems based on JavaPSL,
a Java version of ASL.

6 Summary and Future Work

In this paper we demonstrated the viability of automated performance analysis
based on performance property specifications. We described the general idea and



explained the structure of the the Apart Specification Language (ASL). In ASL,
performance properties are specified with respect to a specific data model.

We presented our data model for shared-memory parallel code that allows the
representation of performance critical data such as time waited to enter a con-
struct. The data model is designed according to restrictions on what can actually
be measured from the execution of OpenMP program. We rely on the POMP
specification [10] and source-to-source instrumentation added by Opari [11] to
expose OpenMP execution events, since OpenMP still lacks a standard profiling
interface.

We tested the efficacy of our property specification on some test applications.
To acquire the performance data needed for the data model, we relied on our own
OpenMP profiler ompP [6]. The examples show that the data required for checking
the properties can be derived from the execution of an OpenMP program and
that the performance properties given in examples in Sect. 3 are able determine
the major cause of inefficiency in the presented example programs.

Tuning hints can be associated with performance properties. Currently only
the name of the property (e.g., CriticalSectionContention) conveys informa-
tion on the reason of the detected inefficiency. However, it is easy to augment
the property specification with a more elaborate explanation of the detected in-
efficiency and to give advice with respect to tuning options to the application
developer.

Future work is planned along several directions. First, the set of performance
properties can be extended. For example, data coming from hardware perfor-
mance counters are not yet included, especially cache miss counts and instruction
rates can give rise to interesting and important properties.

Secondly, we are working on a larger and more automatic environment for
performance analysis in the Periscope project [14]. The goal is to have an ASL
compiler that takes the specification of performance properties and translates
them into C++ code. Compiling the code creates loadable modules used by the
Periscope system to detect performance inefficiencies at runtime. Periscope
is designed for MPI and OpenMP and supports large scale systems by virtue
of a distributed analysis system consisting of agents distributed over the nodes
large SMP-based cluster systems.

References

1. Mark E. Crovella and Thomas J. LeBlanc. Parallel performance prediction using
lost cycles analysis. In Proceedings of the 1994 Conference on Supercomputing (SC
1994), pages 600–609. ACM Press, 1994.

2. Antonio J. Dorta, Casiano Rodŕıguez, Francisco de Sande, and Arturo Gonzáles-
Escribano. The OpenMP source code repository. In Proceedings of the 13th Eu-
romicro Conference on Parallel, Distributed and Network-Based Processing (PDP
2005), pages 244–250, February 2005.

3. Thomas Fahringer, Michael Gerndt, Bernd Mohr, Felix Wolf, Graham Riley, and
Jesper Larsson Träff. Knowledge specification for automatic performance analysis.
APART technical report, revised edition. Technical Report FZJ-ZAM-IB-2001-08,
Forschungszentrum Jülich, 2001.



4. Thomas Fahringer, Michael Gerndt, Graham Riley, and Jesper Larsson Träff. For-
malizing OpenMP performance properties with ASL. In Proceedings of the 2000
International Symposium on High Performance Computing (ISHPC 2000), Work-
shop on OpenMP: Experience and Implementation (WOMPEI), pages 428–439.
Springer-Verlag, 2000.

5. Thomas Fahringer and Clóvis Seragiotto Júnior. Automatic search for perfor-
mance problems in parallel and distributed programs by using multi-experiment
analysis. In Proceedings of the 9th International Conference On High Performance
Computing (HiPC 2002), pages 151–162. Springer-Verlag, 2002.

6. Karl Fürlinger and Michael Gerndt. ompP: A profiling tool for OpenMP. In Pro-
ceedings of the First International Workshop on OpenMP (IWOMP 2005), 2005.
Accepted for publication.

7. Michael Gerndt. Specification of performance properties of hybrid programs on
hitachi SR8000. Technical report, Lehrstuhl für Rechnertechnik und Rechneror-
ganisation, Institut für Informatik, Technische Universität München, 2002.

8. Clóvis Seragiotto Júnior, Thomas Fahringer, Michael Geissler, Georg Madsen, and
Hans Moritsch. On using aksum for semi-automatically searching of performance
problems in parallel and distributed programs. In Proceedings of the 11th Eu-
romicro Conference on Parallel, Distributed and Network-Based Processing (PDP
2003), pages 385–392. IEEE Computer Society, February 2003.

9. Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.
Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam,
and Tia Newhall. The Paradyn parallel performance measurement tool. IEEE
Computer, 28(11):37–46, 1995.

10. Bernd Mohr, Allen D. Malony, Hans-Christian Hoppe, Frank Schlimbach, Grant
Haab, Jay Hoeflinger, and Sanjiv Shah. A performance monitoring interface for
OpenMP. In Proceedings of the Fourth Workshop on OpenMP (EWOMP 2002),
September 2002.

11. Bernd Mohr, Allen D. Malony, Sameer S. Shende, and Felix Wolf. Towards a
performance tool interface for OpenMP: An approach based on directive rewriting.
In Proceedings of the Third Workshop on OpenMP (EWOMP’01), September 2001.

12. Bernd Mohr and Jesper Larsson Träff. Initial design of a test suite for automatic
performance analysis tools. In Proc. HIPS, pages 77–86, 2003.

13. Anna Morajko, Oleg Morajko, Josep Jorba, and Tomàs Margalef. Automatic per-
formance analysis and dynamic tuning of distributed applications. Parallel Pro-
cessing Letters, 13(2):169–187, 2003.

14. Periscope project homepage http://wwwbode.cs.tum.edu/~gerndt/home/

Research/PERISCOPE/Periscope.htm%.
15. Philip C. Roth, Dorian C. Arnold, and Barton P. Miller. MRNet: A software-

based multicast/reduction network for scalable tools. In Proceedings of the 2003
Conference on Supercomputing (SC 2003), November 2003.

16. Michael Süß and Claudia Leopold. A user’s experience with parallel sorting and
openmp. In Proceedings of the Sixth Workshop on OpenMP (EWOMP’04), October
2004.

17. Felix Wolf and Bernd Mohr. Automatic performance analysis of hybrid
MPI/OpenMP applications. In Proceedings of the 11th Euromicro Conference
on Parallel, Distributed and Network-Based Processing (PDP 2003), pages 13–22.
IEEE Computer Society, February 2003.


