
Task-Queue Based Hybrid Parallelism: A Case

Study

Karl Fürlinger1, Olaf Schenk2, and Michael Hagemann2

1 Institut für Informatik,
Lehrstuhl für Rechnertechnik und Rechnerorganisation

Technische Universität München
karl.fuerlinger@in.tum.de
2 Departement Informatik,

Universität Basel
{olaf.schenk, michael.hagemann}@unibas.ch

Abstract. In this paper we report on our experiences with hybrid par-
allelism in PARDISO, a high-performance sparse linear solver. We start
with the OpenMP-parallel numerical factorization algorithm and re-
organize it using a central dynamic task queue to be able to add message
passing functionality. The hybrid version allows the solver to run on a
larger number of processors in a cost effective way with very reasonable
performance. A speed-up of more than nine running on a four-node quad
Itanium 2 SMP cluster is achieved in spite of the fact that a large po-
tential to minimize MPI communication is not yet exploited in the first
version of the implementation.

1 Introduction

Hybrid parallelism (i.e., the combined usage of shared memory and message
passing programming paradigms) seems to be a perfect fit for the hierarchical
organization of today’s popular SMP cluster systems. In most previous reports
on the merits of hybrid parallelism (e.g., [12,2,1,8]), existing MPI applications
have been extended with OpenMP shared memory programming constructs.
Often the authors arrive at the conclusion that the performance of pure MPI
programs is generally somewhat better than those of their hybrid counterparts.
Still, a hybrid approach might be advantageous in certain circumstances, such
as when the MPI code scales poorly or when replication of the dataset limits the
number of MPI processes per node.

In this paper we report on our experiences with the other path to hybrid
parallelism: We start with PARDISO, a shared memory parallel direct solver
for large sparse systems of linear equations [7] that has recently been included
into the Intel Math Kernel Library (MKL) [5]. In order to support message
passing, we introduce a modified version of the OpenMP-parallel central numer-
ical factorization algorithm that accounts for most of the solver’s runtime. The
modified version uses a dynamic task-queue instead of OpenMP’s parallel for

TUMuser
New Stamp



construct for work sharing. The introduction of message passing functionality is
then straightforward by adding new tasks related to message passing.

The rest of the paper is organized as follows: Section 2 provides some general
information about PARDISO and describes the current OpenMP implementa-
tion of the central numerical factorization algorithm. Section 3 describes the
new task-queue based implementation of this algorithm which is the basis for
the message passing extensions described in Section 4. Then, in Section 5, we
compare the performance of the different incarnations of our implementation
(sequential, pure OpenMP, pure MPI, and hybrid OpenMP+MPI) on a number
of test matrices. Finally, Section 6 concludes and discusses future work.

2 The Sparse Direct Solver PARDISO

PARDISO is a high performance direct solver for sparse systems of linear equa-
tions which arise in application areas such as semiconductor device simulation.

In this work we are only concerned with PARDISO’s supernodal3 left-right
looking numerical factorization algorithm that accounts for most of the run-
time of the solver. For a comprehensive discussion of PARDISO please con-
sult [9,10,11].

A1
k

A2
k

B1
k

B2
k

Ck

U2
k L1

k

U1
k

L2
k

A B C D E F G H I J K L

B

C

D

E

F

G

H

I

J

K

L

A

Fig. 1. Block-based LU factorization (left) and example sparse matrix with su-
pernodes {A,B}, {C}, {D,E}, {F}, {G,H,I}, {J}, {K,L} (right).

To motivate the algorithm used by PARDISO consider the block-based LU
factorization depicted in Fig. 1. In the k-th elimination step, the k-th block row
and the k-th block column are computed by performing the following operations:

1. The external modifications (‘updates’) of the block columns of L and block
rows of U :

Ck ← Ck −

(

A1
k

A2
k

)

B1
k
, U2

k
← U2

k
− A1

k
B2

k
. (1)

3 A supernode is defined as a group of consecutive rows/columns with similar non-zero
structure.



2. The internal factorization of the diagonal block of Ck, to obtain the factors
L1

k
and U1

k
, followed by the internal factorization of the block columns of L

and rows of U :

L2
k
← L2

k
(U1

k
)−1, U2

k
← (L1

k
)−1U2

k
. (2)

Similar operations are performed in the supernodal approach used by PAR-
DISO. However, instead of one external update involving all previously factored
blocks (all blocks to the left), the update is split into several smaller supern-
ode updates, of course only the non-zero supernodes need to be considered in
this case. For example, in the sparse matrix shown in the right part of Fig. 1,
supernode {D,E} is updated by {A,B} but not by {C}.

The original implementation of this algorithm is shown in Fig. 2 where nup(j)
denotes the number of outstanding external updates on supernode j, U(j) is the
set of all supernodes that are updated by supernode j and L(j) holds all ‘ready’
supernodes that update supernode j.

The algorithm is called left-right looking, because for the factorization of
supernode j, all updates from ‘left’ supernodes are considered (i.e, those with
smaller index) and as soon as the factorization of j is finished, all ‘right’ supern-
odes that are updated by j are informed that j is ready.

1: #pragma omp parallel for

2: for j = 1 . . . Nsupernodes do

3: while nup(j) > 0 do

4: wait for i ∈ L(j)
5: L ← L\{i}
6: perform j ← i supernode update
7: nup(j) ← nup(j)−1
8: end while

9: for all k ∈ U(j) do

10: L(k) ← L(k) ∪ {j}
11: end for

12: end for

Fig. 2. PARDISO’s original factorization algorithm.

It is not obvious how the algorithm shown in Fig. 2 can be extended with
message passing functionality. The easiest way would be to use one OpenMP
thread for MPI communication that could not participate in the main work-
sharing for loop. Our approach is instead the re-organization of the algorithm
using a central task-queue as described in the next section. Sending and receiving
messages can then be handled quite easily by adding new task types related to
message passing.



3 Task-queue Based Re-Organization

The central data structure of the new OpenMP version is a task-queue (a linked
list of task descriptors). Fig. 3 shows a statechart of the new algorithm. The
task-queue is initialized with all supernodes that are ready to be factored (i.e.,
those that do not require any external updates). Then, until all supernodes are
factored, each thread fetches a task descriptor from the head of the queue and
performs the associated action.

Initialize

Queue

Get Task from
Queue

Test Lock

on Panel i

[task=update panel i
with panel k]

Put Task Back

in Queue

[lock not

acquired]Perform

Update(i,k)

Enqueue

Factor(i) Task

in Queue

[lock acquired]

[last update
on panel i]

Factorize

Panel i

[task=factor panel i]

Enqueue

Update(j,i) Tasks

[Done]

Fig. 3. Statechart of the new OpenMP factorization algorithm.

There are two types of tasks: Factor(j) is the internal factorization of the
supernode j. After the factorization of supernode j is finished, Update(k,j) tasks
are enqueued for all supernodes k that are updated by supernode j.

The Update(k,j) tasks are the second type of tasks. A thread that performs
an Update(k,j) task checks if there are further outstanding Update(k,·) tasks. If
this is not the case, the supernode is ready to be factored and a Factor(k) task
is enqueued.

In contrast to the original version, the new OpenMP version has the ad-
vantage of better load balancing since the fine grained tasks are dynamically
distributed to the whole thread set. A potential disadvantage is the increased
requirement for thread synchronization. Access to the task-queue is protected
by using OpenMP’s critical section construct. Furthermore, concurrent updates
to the same supernode by different threads are avoided by using OpenMP locks.

Table 1 shows a performance comparison between the original and the new
OpenMP version for the six test matrices listed in Tab. 2. Evidently, the new
version is about ten percent slower for two threads and around 20 percent slower
for four threads. The difference can be attributed to the increased synchroniza-
tion requirements mentioned and a less advantageous order of the supernode
updates with respect to cache misses.



Matrix 1 2 3 4 5 6

Sequential 64.17 158.60 116.32 109.93 398.65 314.12

2 Threads Original Version 32.58 76.41 56.02 53.05 192.88 153.30
New Version 36.12 84.09 62.28 58.55 210.48 165.04
Ratio 1.11 1.10 1.11 1.10 1.09 1.08

4 Threads Original Version 17.91 41.24 30.44 28.78 103.23 82.91
New Version 21.65 48.75 36.59 34.66 119.18 93.61
Ratio 1.21 1.18 1.20 1.20 1.15 1.13

Table 1. Factorization time in seconds for the original and the new OpenMP
algorithm for two and four threads on a quad Intel Itanium 2 SMP system.
Sequential denotes the sequential factorization time of the new algorithm.

.

4 Adding Message Passing Functionality

It is straightforward to add message passing functionality to the implementation
described in section 3. The statechart of the hybrid version is shown in Figure 4,
the new states related to MPI are shown in grey. Each MPI process consists of
a number of OpenMP threads and “owns” a number of supernodes, implying
its responsibility to perform all external updates on those supernodes as well
as the internal factorization. The assignment of supernodes to MPI processes is
currently a simple static round-robin assignment.

Similar to the OpenMP version, the task-queue of each process in initialized
with the supernodes that are ready to be factored. However, in the MPI version,
each MPI process only adds the supernodes it owns. Furthermore, when process
P1 factors supernode k it enqueues only those Update(j,k) tasks that affect the
supernodes j owned by P1. In addition P1 sends the supernode k (i.e., the L and
U factors and pivoting data) to all other MPI processes that own supernodes
that are updated by k.

To overlap communication with computation, asynchronous MPI operations
are used. When an MPI process P1 transfers a supernode to process P2 it first
sends an integer denoting the affected panel. Then it posts asynchronous send
(MPI Isend()) operations that transfer the actual panel data (the L and U

factors and pivoting data).
On the receiving side, on each iteration of the main work loop, a thread first

checks for incoming MPI messages. If an MPI Iprobe() indicates an incoming
supernode j, the thread posts corresponding asynchronous receive operations
(MPI Irecv()) for the L and U factors of the supernode and for the pivoting
data. It then creates a Complete Receive(j) task and places it on the task-
queue. Then the thread proceeds as usual with its iteration of the work loop.

When a thread fetches a Complete Receive(j) task from the queue, it uses
MPI Testall() to check whether all asynchronous operations related to panel j

have finished. If this is not the case, the task is put back in the queue. Otherwise,
all local Update(·,j) tasks are enqueued just as if the panel would have been
factored locally.



[not
completed]

Initialize

Queue

Get Task from

Queue

Test Lock

on Panel i

[task=update panel i

with panel k] Put Task Back

in Queue

[lock not

acquired]

Perform

Update(i,k)

Enqueue

Factor(i) Task

[lock acquired]

[last update

on panel i]

Factorize

Panel i

Enqueue
Update(j,i) Tasks

[task=factor

panel i]MPI_Isend Panel i to

the MPI processes
that need it Test Completion

of Receive Operation

Enqueue
Update(j,i) Tasks

Put Task Back
[task=complete-

receive]

[completed]

[Done]

Fig. 4. Statechart of the hybrid OpenMP/MPI factorization algorithm.

5 Results

The new OpenMP approach and the message passing extensions have been im-
plemented in a way that allows us to derive four different versions of the applica-
tion from the same source code. seq is the sequential version, omp.a is the pure
OpenMP version with a threads, mpi.a (n) is a pure MPI version with a MPI
processes on each of n nodes and hyb.a:b (n) is the hybrid version running on
n nodes with a MPI processes on each node that consist of b OpenMP threads.

The programs were tested on an Itanium 2 cluster with four nodes. Each
node ist built up of four Itanium 2 (‘Madison’) Processors with 1.3 GHz, 3
MB third level cache and 8 GB of main memory. The nodes are connected by
Mellanox 4x Infiniband [3] HCAs. We used MVAPICH (based on MPICH 1.2.5,
OSU patch 0.9.2) and the Intel C and Fortran compilers in version 7.1. The tests
were performed with the matrices shown in Tab. 2.

Fig. 5 shows the speedup of various versions of our programs relative to the
sequential version. The following conclusions can be derived:

– The MPI version is usually slightly slower than the OpenMP version on the
same number of processors, the hybrid version is in between.

– The larger processor configurations perform better on the larger matrices.
– The hyb.1:2 (4) variant is usually slightly faster than the hyb.1.4 (2)

version. This indicates that the decreased memory bus load (for two threads
on one node) outweighs the additional message passing requirements.

– A speedup of more than nine can be achieved using a hybrid version running
on all 16 processors.

– MPI variants with more than one MPI process on a node (not shown in
Fig. 5) usually perform worse than variants with only one MPI process per



Number Matrix N nnz nsuper

1 3D 75932 sef3D 75932 88,528,964 23,112
2 barrier2-4 113076 175,824,468 22,352
3 matrix-ibm-watson 125329 147,872,909 27,825
4 matrix 9 103430 129,396,404 23,447
5 ohne1 181343 417,744,155 24,099
6 para-2 153226 287,734,810 29,781

Table 2. The test matrices. N is the order of the matrix, nnz is the total
number of non-zeros and nsuper is the number of supernodes identified by the
pre-processing stages of PARDISO.

node (e.g., mpi.1 (4) vs. mpi.2 (2)). This is due to the large memory
requirement of the program (more than five GB for the largest matrices)
and the fact that all data is replicated by the MPI processes.

– We additionally measured the communication time using mpiP [6]. Depend-
ing on the particular input matrix, the total aggregated time spent in MPI
functions is in the range of 5–9%, 7–15% and 10–20% for 2, 3 and 4 MPI pro-
cesses, respectively. The number is typically smaller for larger matrices and
higher for the smaller exemplars. The most MPI time (around 30%) is spent
in the MPI Iprobe function (which is called very frequently). The receive
operations for the panel (despite being asynchronous) and the MPI Testall

to check whether the panel has been transferred also contribute significantly.

6 Conclusion and Future Work

We have presented our experiences with the hybridization of an application
using OpenMP work-sharing constructs. Our approach was to re-organize the
application to use a central task-queue instead of the work-sharing constructs.
This yields a very flexible solution and it is then straightforward to add message-
passing extensions.

Adding message passing capabilities allows the solver to run on a much larger
number of processors beyond the confines of a single SMP system. We have shown
that reasonable performance can be achieved with a speedup of more than nine
on 16 processors.

A number of optimizations have not yet been implemented in the current
version of our hybrid code. Most notable, PARDISO already uses METIS [4]
for graph-partitioning in its two-level scheduling approach [9] to optimize cache
misses. This partitioning will be very effective to minimize the number of mes-
sages sent between processes once it is included in the hybrid version.

References

1. Edmond Chow and David Hysom. Assessing performance of hybrid MPI/OpenMP
programs on SMP clusters. Technical Report UCRL-JC-143957, Lawrence Liver-



1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

10

S
pe
ed
up

Matrix

 omp.2
 omp.4
 mpi.1 (2)
 mpi.1 (4)
 hyb.1:2 (2)
 hyb.1:4 (2)
 hyb.1:2 (4)
 hyb.1:4 (4)

Fig. 5. Speedup relative to the sequential version.

more National Laboratory, May 2001. submitted to J. Parallel and Distributed
Computing.

2. D. S. Henty. Performance of hybrid message-passing and shared-memory par-
allelism for discrete element modeling. In Proceedings of the 2000 ACM/IEEE
conference on Supercomputing. IEEE Computer Society, 2000.

3. Infiniband Trade Association. http://www.infinibandta.org/home.
4. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for parti-

tioning irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392,
1998.

5. Intel Math Kernel Library. http://www.intel.com/software/products/mkl/

beta/features.htm.
6. mpip: Lightweight, scalable mpi profiling. http://www.llnl.gov/CASC/mpip/.
7. Pardiso website. http://www.computational.unibas.ch/computer science/

scicomp/software/pardiso/.
8. Rolf Rabenseifner. Hybrid parallel programming: Performance problems and

chances. In Proc. 45th Cray Users’s Group (CUG) Meeting, May 2003.
9. Olaf Schenk and Klaus Gärtner. Two-level scheduling in PARDISO: Improved scal-

ability on shared memory multiprocessing systems. Parallel Computing, 28:187–
197, 2002.

10. Olaf Schenk and Klaus Gärtner. Solving unsymmetric sparse systems of linear
equations with PARDISO. Future Generation Computer Systems, 2003.

11. Olaf Schenk, Klaus Gärtner, and Wolfgang Fichtner. Efficient sparse LU factor-
ization with left-right looking strategy on shared memory multiprocessors. BIT,
40(1):158–176, 2000.

12. Lorna Smith. Mixed mode MPI/OpenMP programming. Technical Report EH9
3JZ, Edinburgh Parallel Computing Centre, 2000.


