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Abstract DASH is a realization of the PGAS (partitioned global address space)
programming model in the form of a C++ template library. It provides a multi-
dimensional array abstraction which is typically used as an underlying container
for stencil- and dense matrix operations. Efficiency of operations on a distributed
multi-dimensional array highly depends on the distribution of its elements to pro-
cesses and the communication strategy used to propagate values between them. Lo-
cality can only be improved by employing an optimal distribution that is specific
to the implementation of the algorithm, run-time parameters such as node topology,
and numerous additional aspects. Application developers do not know these impli-
cations which also might change in future releases of DASH. In the following, we
identify fundamental properties of distribution patterns that are prevalent in existing
HPC applications. We describe a classification scheme of multi-dimensional distri-
butions based on these properties and demonstrate how distribution patterns can be
optimized for locality and communication avoidance automatically and, to a great
extent, at compile time.
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1 Introduction

For Exascale systems the cost of accessing data is expected to be the dominant
factor in terms of execution time as well as energy consumption [3]. To minimize
data movement, applications have to consider initial placement and optimize both
vertical data movement in the memory hierarchy and horizontal data movement
between processing units. Programming systems for Exascale must therefore shift
from a compute-centric to a more data-centric focus and give application developers
fine-grained control over data locality.

On an algorithmic level, many scientific applications are naturally expressed in
multi-dimensional domains that arise from discretization of time and space. How-
ever, few programming systems support developers in expressing and exploiting
data locality in multiple dimensions beyond the most simple one-dimensional dis-
tributions. In this paper we present a framework that enables HPC application devel-
opers to express constraints on data distribution that are suitable to exploit locality
in multi-dimensional arrays.

The DASH library [10] provides numerous variants of data distribution schemes.
Their implementations are encapsulated in well-defined concept definitions and are
therefore semantically interchangeable. However, no single distribution scheme is
suited for every usage scenario. In operations on shared multi-dimensional contain-
ers, locality can only be maintained by choosing an optimal distribution. This choice
depends on:

• the algorithm executed on the shared container, in particular its communication
pattern and memory access scheme,

• run-time parameters such as the extents of the shared container, the number of
processes and their network topology,

• numerous additional aspects such as CPU architecture and memory topology.

The responsibility to specify a data distribution that achieves high locality and com-
munication avoidance lies with the application developers. These, however, are not
aware of implementation-specific implications: a specific distribution might be bal-
anced, but blocks might not fit into a cache line, inadvertently impairing hardware
locality.

As a solution, we present a mechanism to find a concrete distribution variant
among all available candidate implementations that satisfies a set of properties. In
effect, programmers do not need to specify a distribution type and its configuration
explicitly. They can rely on the decision of the DASH library and focus only on
aspects of data distribution that are relevant in the scenario at hand.

For this, we first identify and categorize fundamental properties of distribution
schemes that are prevalent in algorithms in related work and existing HPC appli-
cations. With DASH as a reference implementation, we demonstrate how data dis-
tributions can then be optimized determined automatically and, to a great extent, at
compile time.

From a software engineering perspective, we explain how our methodology fol-
lows best practices known from established C++ libraries and thus ensures that user
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applications are not only robust against, but even benefit from future changes in
DASH.

The remainder of this paper is structured as follows: The following section in-
troduces fundamental concepts of PGAS and locality in the context of DASH. A
classification of data distribution properties is presented in Sec. 3. In Sec. 4, we
show how this system of properties allows to exploit locality in DASH in different
scenarios. Using the use case of SUMMA as an example, the presented methods are
evaluated for performance as well as flexibility against the established implementa-
tions from Intel MKL and ScaLAPACK. Publications and tools related to this work
are discussed in Sec. 6. Finally, Sec. 7 gives a conclusion and an outlook on fu-
ture work where the DASH library’s pattern traits framework is extended to sparse,
irregular, and hierarchical distributions.

2 Background

This section gives a brief introduction to the Partitioned Global Address Space
approach considering locality and data distribution. We then present concepts in
the DASH library used to express process topology, data distribution and iteration
spaces. The following sections build upon these concepts and present new mecha-
nisms to exploit locality automatically using generic programming techniques.

2.1 PGAS and Multi-Dimensional Locality

Conceptually, the Partitioned Global Address Space (PGAS) paradigm unifies mem-
ory of individual, networked nodes into a virtual global memory space. In effect,
PGAS languages create a shared namespace for local and remote variables. This,
however, does not affect physical ownership. A single variable is only located in a
specific node’s memory and local access is more efficient than remote access from
other nodes. This is expected to matter more and more even within single (NUMA)
nodes in the near future [3]. As locality directly affects performance and scalability,
programmers need full control over data placement. Then, however, they are facing
overwhelmingly complex implications of data distribution on locality.

This complexity increases exponentially with the number of data dimensions.
Calculating a rectangular intersection might be manageable for up to three dimen-
sions, but locality is hard to maintain in higher dimensions, especially for irregular
distributions.
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2.2 DASH Concepts

Expressing data locality in a Partitioned Global Address Space language builds upon
fundamental concepts of process topology and data distribution. In the following, we
describe these concepts as they are used in the context of DASH.

2.2.1 Topology: Teams and Units

In DASH terminology, a unit refers to any logical component in a distributed mem-
ory topology that supports processing and storage. Conventional PGAS approaches
offer only the differentiation between local and global data and distinguish between
private, shared-local, and shared-remote memory. DASH extends this model by a
more fine-grained differentiation that corresponds to hierarchical machine models
as units are organized in hierarchical teams. For example, a team at the top level
could group processing nodes into individual teams, each again consisting of units
referencing single CPU cores.

2.2.2 Data Distribution: Patterns

Data distributions in general implement a two-level mapping:

1. from index to process (node- or process mapping)
2. from process to local memory offset (local order or layout)

Index sets separate the logical index space as seen by the user from physical
layout in memory space. This distinction and the mapping between index domains
is usually transparent to the programmer.

Fig. 1 Example of partitioning, mapping, and layout in the distribution of a dense, two-
dimensional array

Process mapping can also be understood as distribution, arrangement in local
memory is also referred to as layout e.g. in Chapel [4].

In DASH, data decomposition is based on index mappings provided by different
implementations of the DASH Pattern concept. Listing 1 shows the instantiation of a
rectangular pattern, specifying the Cartesian index domain and partitioning scheme.
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Patterns partition a global index set into blocks that are then mapped to units. Con-
sequently, indices are mapped to processes indirectly in two stages: from index to
block (partitioning) and from block to unit (mapping). Figure 1 illustrates a pat-
tern’s index mapping as sequential steps in the distribution of a two-dimensional
array. While the name and the illustrated example might suggest otherwise, blocks
are not necessarily rectangular.

In summary, the DASH pattern concept defines semantics in the following cate-
gories:

Distribution Well-defined distribution of indices to units, depending on
properties in the subordinate categories:

Partitioning Grouping indices into blocks
Mapping Distributing blocks to units in a team

Layout Arrangement of blocks and block elements in local memory
Indexing Operations related to index sets for iterating data elements in

global- and local scope

Layout semantics specify the arrangement of values in local memory and, in effect,
their order. Indexing semantics also include index set operations like slicing and
intersection but do not affect physical data distribution.

We define distribution semantics of a pattern type depending on the following set
of operations:

local(iG) 7→ (u, iL) Index iG to unit u and local offset iL
global(u, iL) 7→ iG Unit u and local offset iL to global index iG

unit(iG) 7→ u Index iG to unit u

local block(iG) 7→ (u, iLB) Index iG to unit u and local block index iLB

global block(iG) 7→ iGB Index iG to global block index iGB

with n-dimensional indices iG, iL as coordinates in the global / local Cartesian ele-
ment space and iGB, iLB as coordinates in the global / local Cartesian block space.
Instead of a Cartesian point, an index may also be declared as a point’s offset in
linearized memory order.
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1 // Brief notation:
2 TilePattern<2> pattern(global_extent_x, global_extent_y,
3 TILED(tilesize_x), TILED(tilesize_y));
4 // Equivalent full notation:
5 TilePattern<2, dash::default_index_t, ROW_MAJOR>
6 pattern(DistributionSpec<2>(
7 TILED(tilesize_x), TILED(tilesize_y),
8 SizeSpec<2, dash::default_size_t>(
9 global_extent_x, global_extent_y),

10 TeamSpec<1>(
11 Team::All()));

Listing 1 Explicit instantiation of DASH patterns

DASH containers use patterns to provide uniform notations based on view proxy
types to express index domain mappings. User-defined data distribution schemes
can be easily incorporated in DASH applications as containers and algorithms ac-
cept any type that implements the Pattern concept.

Listing 2 illustrates the intuitive usage of user-defined pattern types and the
local and block view accessors that are part of the DASH Container concept.
View proxy objects use a referenced container’s pattern to map between its index do-
mains but do not contain any elements themselves. They can be arbitrarily chained
to refine an index space in consecutive steps, as in the last line of Listing 2: the
expression array.local.block(1) addresses the second block in the array’s
local memory space.

In effect, patterns specify local iteration order similar to the partitioning of itera-
tion spaces e.g. in RAJA [11]. Proxy types implement all methods of their delegate
container type and thus also provide begin and end iterators that specify the iter-
ation space within the view’s mapped domain. DASH iterators provide an intuitive
notation of ranges in virtual global memory that are well-defined with respect to
distance and iteration order, even in multi-dimensional and irregular index domains.

1 CustomPattern pattern;
2 dash::Array<double> a(size, pattern);
3 double g_first = a[0] // First value in global memory,
4 // corresponds to a.begin()
5 double l_first = a.local[0]; // First value in local memory,
6 // corresponds to a.local.begin()
7 dash::copy(a.block(0).begin(), // Copy first block in
8 a.block(0).end(), // global memory to second
9 a.local.block(1).begin()); // block in local memory

Listing 2 Views on DASH containers
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3 Classification of Pattern Properties

While terms like blocked, cyclic and block-cyclic are commonly understood, the ter-
minology of distribution types is inconsistent in related work, or varies in semantics.
Typically, distributions are restricted to specific constraints that are not applicable
in the general case for convenience.

Instead of a strict taxonomy enumerating the full spectrum of all imaginable
distribution semantics, a systematic description of pattern properties is more practi-
cable to abstract semantics from concrete implementations. The classification pre-
sented in this section allows to specify distribution patterns by categorized, un-
ordered sets of properties. It is, of course, incomplete, but can be easily extended.
We identify properties that can be fulfilled by data distributions and then group these
properties into orthogonal categories which correspond to the separate functional
aspects of the pattern concept described in Subsection 2.2.2: partitioning, unit map-
ping, and memory layout. This categorization also complies with the terminology
and conceptual findings in related work [16].

DASH pattern semantics are specified by a configuration of properties in these
dimensions:

Global×Partitioning×Mapping︸ ︷︷ ︸
Distribution

×Layout

Details on a selection of single properties in all categories are discussed in the re-
mainder of this section.

3.1 Partitioning Properties

Partitioning refers to the methodology used to subdivide a global index set into dis-
joint blocks in an arbitrary number of logical dimensions. If not specified otherwise
by other constraints, indices are mapped into rectangular blocks. A partitioning is
regular if it only creates blocks with identical extents and balanced if all block have
identical size.

rectangular Block extents are constant in every single dimension, e.g. ev-
ery row has identical size.

minimal Minimal number of blocks in every dimension, i.e. at most one
block for every unit.

regular All blocks have identical extents.
balanced All blocks have identical size (number of elements).
multi-dimensional Data is partitioned in at least two dimensions.
cache-aligned Block sizes are a multiple of cache line size.

Note that with the classification, these properties are mostly independent: rectan-
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gular partitionings may produce blocks with varying extents, balanced partitionings
are not necessarily rectangular, and so on. For example, partitioning a matrix into
triangular blocks could satisfy the regular and balanced partitioning properties. The
fine-grained nature of property definitions allows many possible combinations that
form an expressive and concise vocabulary to express pattern semantics.

3.2 Mapping Properties

Well-defined mapping properties exist that have been formulated to define multipar-
titionings, a family of distribution schemes supporting parallelization of line sweep
computations over multi-dimensional arrays.

The first and most restrictive multipartitioning has been defined based on the
diagonal property [15]. In a multipartitioning, each process owns exactly one tile in
each hyperplane of a partitioning so that all processors are active in every step of a
line-sweep computation along any array dimension as illustrated in Figure 2.

Fig. 2 Combinations of mapping properties. Numbers in blocks indicate the unit rank owning the
block

General multipartitionings are a more flexible variant that allows to assign more
than one block to a process in a partitioned hyperplane. The generalized definition
subdivides the original diagonal property into the balanced and neighbor mapping
properties [6] described below. This definition is more relaxed but still preserves the
benefits for line-sweep parallelization.

balanced The number of assigned blocks is identical for every unit.
neighbor A block’s adjacent blocks in any one direction along a dimen-

sion are all owned by some other processor.
shifted Units are mapped to blocks in diagonal chains in at least one

hyperplane.
diagonal Units are mapped to blocks in diagonal chains in all hyper-

planes.
cyclic Blocks are assigned to processes like dealt from a deck of

cards in every hyperplane, starting from first unit.
multiple At least two blocks are mapped to every unit.
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The constraints defined for multipartitionings are overly strict for some algorithms
and can be further relaxed to a subset of its properties. For example, a pipelined
optimization of the SUMMA algorithm requires a diagonal shift mapping [14, 18]
that satisfies the diagonal property but is not required to be balanced. Therefore, the
diagonal property in our classification does not imply a balanced mapping, deviating
from its original definition.

3.3 Layout Properties

Layout properties describe how values are arranged in a unit’s physical memory
and, consequently, their order of traversal. Perhaps the most crucial property is stor-
age order which is either row- or column major. If not specified, DASH assumes
row-major order as known from C. The list of properties can also be extended to
give hints to allocation routines on the physical memory topology of units such as
NUMA or CUDA.

row-major Row major storage order, used by default.
col-major Column major storage order.
blocked Elements are contiguous in local memory within a single

block.
canonical All local indices are mapped to a single logical index domain.
linear Local element order corresponds to a logical linearization

within single blocks (tiled) or within entire local memory
(canonical).

While patterns assign indices to units in logical blocks, they do not necessarily pre-
serve the block structure in local index sets. After process mapping, a pattern’s lay-
out scheme may arrange indices mapped to a unit in an arbitrary way in physical
memory. In canonical layouts, the local storage order corresponds to the logical
global iteration order. Blocked layouts preserve the block structure locally such that
values within a block are contiguous in memory, but in arbitrary order. The addi-
tional linear property also preserves the logical linearized order of elements within
single blocks. For example, Morton order memory layout as shown in Figure 3 sat-
isfies the blocked property, as elements within a block are contiguous in memory,
but does not grant the linear property.
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Fig. 3 Morton order memory layout of block elements

3.4 Global Properties

The Global category is usually only needed to give hints on characteristics of the
distributed value domain such as the sparse property to indicate the distribution of
sparse data.

dense Distributed data domain is dense.
sparse Distributed data domain is sparse.
balanced The same number of values is mapped to every unit after par-

titioning and mapping.

It also contains properties that emerge from a combination of the independent parti-
tioning and layout properties and cannot be derived from either category separately.
The global balanced distribution property, for example, guarantees the same number
of local elements at every unit. This is trivially fulfilled for balanced partitioning and
balanced mapping where the same number of blocks b of identical size s is mapped
to every unit. However, it could also be achieved in a combination of unbalanced
partitioning and unbalanced mapping, e.g. when assigning b blocks of size s and
b/2 blocks of size 2s.

4 Exploiting Locality with Pattern Traits

The classification system presented in the last section allows to describe distribution
pattern semantics using properties instead of a taxonomy of types that are associ-
ated with concrete implementations. In the following, we introduce pattern traits,
a collection of mechanisms in DASH that utilize distribution properties to exploit
data locality automatically.

As a technical prerequisite for these mechanisms, every pattern type is annotated
with tag type definitions that declare which properties are satisfied by its implemen-
tation. This enables meta-programming based on the patterns’ distribution proper-
ties as type definitions are evaluated at compile time. Using tags to annotate type
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invariants is a common method in generic C++ programming and prevalent in the
STL and the Boost library 1.

1 template <dim_t NDim, ...>
2 class ThePattern {
3 public:
4 typedef mapping_properties<
5 mapping_tag::diagonal,
6 mapping_tag::cyclic >
7 mapping_tags;
8 ...
9 };

Listing 3 Property tags in a pattern type definition.

4.1 Deducing Distribution Patterns from Constraints

In a common use case, programmers intend to allocate data in distributed global
memory with the use for a specific algorithm in mind. They would then have to
decide for a specific distribution type, carefully evaluating all available options for
optimal data locality in the algorithm’s memory access pattern.

To alleviate this process, DASH allows to automatically create a concrete pattern
instance that satisfies a set of constraints. The function make_pattern returns a
pattern instance from a given set of properties and run-time parameters. The actual
type of the returned pattern instance is resolved at compile time and never explicitly
appears in client code by relying on automatic type deduction.

1 http://www.boost.org/community/generic programming.html
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1 static const dash::dim_t NumDataDim = 2;
2 static const dash::dim_t NumTeamDim = 2;
3 // Topology of processes, here: 16x8 process grid
4 TeamSpec<NumTeamDim> teamspec(16, 8);
5 // Cartesian extents of container:
6 SizeSpec<NumDataDim> sizespec(extent_x, extent_y);
7 // Create instance of pattern type deduced from
8 // constraints at compile time:
9 auto pattern =

10 dash::make_pattern<
11 partitioning_properties<
12 partitioning_tag::balanced >,
13 mapping_properties<
14 mapping_tag::balanced, mapping_tag::diagonal >,
15 layout_properties<
16 layout_tag::blocked >
17 >(sizespec, teamspec);

Listing 4 Deduction of an Optimal Distribution

To achieve compile-time deduction of its return type, make_pattern employs the
Generic Abstract Factory design pattern [2]. Different from an Abstract Factory that
returns a polymorphic object specializing a known base type, a Generic Abstract
Factory returns an arbitrary type, giving more flexibility and no longer requiring
inheritance at the same time.

Fig. 4 Type deduction and pattern instantiation in dash::make pattern

Pattern constraints are passed as template parameters grouped by property cate-
gories as shown in Listing 4. Data extents and unit topology are passed as run-time
arguments. Their respective dimensionality (NumDataDim, NumTeamDim), how-
ever, can be deduced from the argument types at compile time. Figure 4 illustrates
the logical model of this process involving two stages: a type generator that resolves
a pattern type from given constraints and argument types at compile time and an
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object generator that instantiates the resolved type depending on constraints and
run-time parameters.

Every property that is not specified as a constraint is a degree of freedom in type
selection. Evaluations of the GUPS benchmark show that arithmetic for dereferenc-
ing global indices is a significant performance bottleneck apart from locality effects.
Therefore, when more than one pattern type satisfies the constraints, the implemen-
tation with the least complex index calculation is preferred.

The automatic deduction also is designed to prevent inefficient configurations.
For example, pattern types that pre-generate block coordinates to simplify index
calculation are inefficient and memory-intensive for a large number of blocks. They
are therefore disregarded if the blocking factor in any dimension is small.

4.2 Deducing Distribution Patterns for a Specific Use Case

With the ability to create distribution patterns from constraints, developers still have
to know which constraints to choose for a specific algorithm. Therefore, we offer
shorthands for constraints of every algorithm provided in DASH that can be passed
to make_pattern instead of single property constraints.

1 dash::TeamSpec<2> teamspec(16, 8);
2 dash::SizeSpec<2> sizespec(1024, 1024);
3 // Create pattern instance optimized for SUMMA:
4 auto pattern = dash::make_pattern<
5 dash::summa_pattern_traits
6 >(sizepec, teamspec);
7 // Create matrix instances using the pattern:
8 dash::Matrix<2, int> matrix_a(sizespec, pattern);
9 dash::Matrix<2, int> matrix_b(sizespec, pattern);

10 ...
11 auto matrix_c = dash::summa(matrix_a, matrix_b)

Listing 5 Deduction of a matching distribution pattern for a given use-case

4.3 Checking Distribution Constraints

An implementer of an algorithm on shared containers might want to ensure that
their distribution fits the algorithm’s communication strategy and memory access
scheme.

The traits type pattern_constraints allows querying constraint attributes
of a concrete pattern type at compile time. If the pattern type satisfies all requested
properties, the attribute satisfied is expanded to true Listing 6 shows its usage
in a static assertion that would yield a compilation error if the object pattern
implements an invalid distribution scheme.
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1 // Compile time constraints check:
2 static_assert(
3 dash::pattern_contraints<
4 decltype(pattern),
5 partitioning_properties< ... >,
6 mapping_properties< ... >,
7 layout_properties< ... >
8 >::satisfied::value
9 );

10 // Run time constraints check:
11 if (dash::check_pattern_contraints<
12 partitioning_properties< ... >,
13 mapping_properties< ... >,
14 indexing_properties< ... >
15 >(pattern)) {
16 // Object ’pattern’ satisfies constraints
17 }

Listing 6 Checking distribution constraints at compile time and run time

Some constraints depend on parameters that are unknown at compile time, such as
data extents or unit topology in the current team.

The function check_pattern_constraints allows checking a given pat-
tern object against a set of constraints at run time. Apart from error handling, it can
also be used to implement alternative paths for different distribution schemes.

4.4 Deducing Suitable Algorithm Variants

When combining different applications in a work flow or working with legacy code,
container data might be preallocated. As any redistribution is usually expensive, the
data distribution scheme is invariant and a matching algorithm variant is to be found.

We previously explained how to resolve a distribution scheme that is the best
match for a known specific algorithm implementation. Pattern traits and generic pro-
gramming techniques available in C++11 also allow to solve the inverse problem:
finding an algorithm variant that is suited for a given distribution. For this, DASH
provides adapter functions that switch between an algorithm’s implementation vari-
ants depending on the distribution type of its arguments. In Listing 7, three matrices
are declared using an instance of dash::TilePattern that corresponds to the
known distribution of their preallocated data. In compilation, dash::multiply
expands to an implementation of matrix-matrix multiplication that best matches the
distribution properties of its arguments, like dash::summa in this case.
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1 typedef dash::TilePattern<2, ROW_MAJOR> TiledPattern;
2 typedef dash::Matrix<2, int, TiledPattern> TiledMatrix;
3 TiledPattern pattern(global_extent_x, global_extent_y,
4 TILE(tilesize_x), TILE(tilesize_y));
5 TiledMatrix At(pattern);
6 TiledMatrix Bt(pattern);
7 TiledMatrix Ct(pattern);
8 ...
9 // Use adapter to resolve algorithm suited for TiledPattern:

10 dash::multiply(At, Bt, Ct); // --> dash::summa(At, Bt, Ct);

Listing 7 Deduction of an algorithm variant for a given distribution

5 Performance Evaluation

We choose dense matrix-matrix multiplication (DGEMM) as a use case for evalua-
tion as it represents a concise example that allows to demonstrate how slight changes
in domain decomposition drastically affect performance even in highly optimized
implementations.

In principle, the matrix-matrix multiplication implemented in DASH realizes a
conventional blocked matrix multiplication similar to a variant of the SUMMA al-
gorithm presented in [14]. For the calculation C = A×B, matrices A, B and C are
distributed using a blocked partitioning. Following the owner computes principle,
every unit then computes the multiplication result

Ci j = Aik×Bk j =
K−1

∑
k=0

AikBk j

for all sub-matrices in C that are local to the unit.
Figure 5 illustrates the first two multiplication steps for a square matrix for sim-

plicity, but the SUMMA algorithm also allows rectangular matrices and unbalanced
partitioning.

Fig. 5 Domain decomposition and first two block matrix multiplications in the SUMMA imple-
mentation. Numbers in blocks indicate the unit mapped to the block.
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We compare strong scaling capabilities on a single processing node against
DGEMM provided by multi-threaded Intel MKL and PLASMA [1]. Performance
of distributed matrix multiplication is evaluated against ScaLAPACK [7] for an in-
creasing number of processing nodes.

Ideal tile sizes for PLASMA and ScaLAPACK had to be obtained in a large series
of tests for every variation of number of cores and matrix size. As PLASMA does
not optimize for NUMA systems, we also tried different configurations of numactl
as suggested in the official documentation of PLASMA.

For the DASH implementation, data distribution is resolved automatically using
the make pattern mechanism as described in Subsec. 4.2.

5.1 Eperimental Setup

To substantiate the transferability of the presented results, we execute benchmarks
on the supercomputing systems SuperMUC and Cori which differ in hardware spec-
ifications and application environments.

SuperMUC phase 22 incorporates an Infiniband fat tree topology interconnect
with 28 cores per processing node. We evaluated performance for both Intel MPI
and IBM MPI.

Cori phase 13 is a Cray system with 32 cores per node in an Aries dragonfly
topology interconnect. As an installation of PLASMA is not available, we evaluate
performance of DASH and Intel MKL.

5.2 Results

We only consider the best results from MKL, PLASMA and ScaLAPACK to provide
a fair comparison to the best of our abilities.

In summary, the DASH implementation consistently outperformed the tested
variants of DGEMM and PDGEMM on distributed- and shared memory scenarios
in all configurations.

More important than performance in single scenarios, overall analysis of results
in single-node scenarios confirms that DASH in general achieved predictable scal-
ability using automatic data distributions. This is most evident when comparing re-
sults on Cori presented in Fig. 7: the DASH implementation maintained consistent
scalability while performance of Intel MKL dropped when the number of processes
was not a power of two, a good example of a system-dependent implication that is
commonly unknown to programmers.

2 https://www.lrz.de/services/compute/supermuc/systemdescription/
3 http://www.nersc.gov/users/computational-systems/cori/cori-phase-i/
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Fig. 6 Strong scaling of matrix multiplication on single node on SuperMUC phase 2, Intel MPI
and IBM MPI, with 4 to 28 cores for increasing matrix size
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Fig. 7 Strong scaling of matrix multiplication on single node on Cori phase 1, Cray MPICH, with
4 to 32 cores for increasing matrix size

6 Related Work

Various aspects of data decomposition have been examined in related work that
influenced the design of pattern traits in DASH.

The Kokkos framework [9] is specifically designed for portable multi-dimensional
locality. It implements compile-time deduction of data layout depending on mem-
ory architecture and also specifies distribution traits roughly resembling some of the
property categories introduced in this work. However, Kokkos targets intra-node lo-
cality focusing on CUDA- and OpenMP backends and does not define concepts for
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Fig. 8 Strong scaling of dash::summa and PDGEMM (ScaLAPACK) on SuperMUC phase 2 for
IBM MPI and Intel MPI for matrix size 57344×57344

process mapping. It is therefore not applicable to the PGAS language model where
explicit distinction between local and remote ownership is required.

UPC++ implements a PGAS language model and, similar to the array concept in
DASH, offers local views for distributed arrays for rectangular index domains [12].
However, UPC++ does not provide a general view concept and no abstraction of
distribution properties as described in this work.

Chapel’s Domain Maps is an elegant framework that allows to specify and incor-
porate user-defined mappings [4] and also supports irregular domains. The funda-
mental concepts of domain decomposition in DASH are comparable to DMaps in
Chapel with dense and strided regions like previously defined in ZPL [5]. Chapel
does not provide automatic deduction of distribution schemes, however, and no clas-
sification of distribution properties is defined.

Finally, the benefits of hierarchical data decomposition are investigated in recent
research such as TiDA, which employs hierarchical tiling as a general abstraction
for data locality [17]. The Hitmap library achieves automatic deduction of data de-
composition for hierarchical, regular tiles [8] at compile time.

7 Conclusion and Future Work

We constructed a general categorization of distribution schemes based on well-
defined properties. In a broad spectrum of different real-world scenarios, we then
discussed how mechanisms in DASH utilize this property system to exploit data
locality automatically.

In this, we demonstrated the expressiveness of generic programming techniques
in modern C++ and their benefits for constrained optimization.

Automatic deduction greatly simplifies the incorporation of new pattern types
such that new distribution schemes can be employed in experiments with with min-
imal effort. In addition, a system of well-defined properties forms a concise and
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precise vocabulary to express semantics of data distribution, significantly improv-
ing testability of data placement.

We will continue our work on flexible data layout mappings and explore concepts
to further support hierarchical locality. We are presently in the process of separating
the functional aspects of DASH patterns (partitioning, mapping and layout) into
separate policy types to simplify pattern type generators. In addition, the pattern
traits framework will be extended by soft constraints to express preferable but non-
mandatory properties.

The next steps will be to implement various irregular and sparse distributions
that can be easily combined with view specifiers in DASH to support the existing
unified sparse matrix storage format provided by SELL-C-σ [13]. We also intend to
incorporate hierarchical tiling schemes as proposed in TiDA [17]. The next release
of DASH including these features will be available in the second quarter of 2016.
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