
A Multi-Dimensional Distributed Array Abstraction
for PGAS

Tobias Fuchs
MNM Team

Ludwig-Maximilians-Universität München
Oettingenstr. 67, 80538 München

tobias.fuchs@nm.ifi.lmu.de

Karl Fürlinger
MNM Team

Ludwig-Maximilians-Universität München
Oettingenstr. 67, 80538 München

karl.fuerlinger@nm.ifi.lmu.de

Abstract—DASH is a realization of the PGAS (partitioned
global address space) model in the form of a C++ template library
without the need for a custom PGAS (pre-)compiler.

We present the DASH NArray concept, a multidimensional
array abstraction designed as an underlying container for stencil-
and dense numerical applications.

After introducing fundamental programming concepts used in
DASH, we explain how these have been extended by multidi-
mensional capabilities in the NArray abstraction. Focusing on
matrix-matrix multiplication in a case study, we then discuss
an implementation of the SUMMA algorithm for dense matrix
multiplication to demonstrate how the DASH NArray facilitates
portable efficiency and simplifies the design of efficient algorithms
due to its explicit support for locality-based operations.

Finally, we evaluate the performance of the SUMMA al-
gorithm based on the NArray abstraction against established
implementations of DGEMM and PDGEMM. In combination
with mechanisms for automatic optimization of logical process
topology and domain decomposition, our implementation yields
highly competitive results without manual tuning, significantly
outperforming Intel MKL and PLASMA in node-level use cases
as well as ScaLAPACK in highly distributed scenarios.

Index Terms—Multidimensional, Array; Matrix; PGAS; Data
Distribution; DGEMM; PDGEMM

I. INTRODUCTION

Many scientific algorithms are naturally expressed in multi-
dimensional domains that arise from discretization of time and
space. In the widely used SPMD (single program, multiple
data) message-passing model, developers are responsible for
manually managing the distribution of these multidimensional
domains onto processes as well as their layout in memory.
In the best case, manually managing distribution, layout, and
transfer of data on such a fine-grained level is an inconve-
nience. In the worst case, it is the source of errors and pre-
vents code modernization because code and data distribution
schemes are tied together too closely.

In the PGAS (partitioned global address space) model
data structures are global entities and data distribution is
specified once, when instantiating the data structure. All
PGAS approaches offer flexible distribution schemes for one-
dimensional arrays. However, multidimensional arrays with
flexible data distribution schemes are more difficult to realize
efficiently since expressing and exploiting data locality is a
much bigger challenge.

In this paper we present the multidimensional array concept
NArray implemented in DASH1, a realization of PGAS as a
C++ template library. It provides distributed data structures
and algorithms designed for modern HPC systems which
include hierarchical network interconnections and increasingly
complex and diversified node-level memory spaces.

In distributed containers, storage space is partitioned in
a potentially arbitrary process topology and any element
access is subject to physical ownership. Locality measures
are thus drastically complicated and maintaining efficiency of
seemingly trivial operations becomes a major challenge for
programmers.

The PGAS model unifies distributed memory in a virtual
global address space, in effect providing a programming
interface similar to shared memory. Locality of data access
can still be stated explicitly as shared variables have well-
defined ownership. PGAS abstractions significantly facilitate
the implementation of complex distributed algorithms at least
on a syntactic level and can even enable elegant programming
techniques, especially when supporting a one-sided communi-
cation model.

In this work, we demonstrate how DASH aids in robust,
efficient algorithmic design using the example of a multidi-
mensional array abstraction. In summary, this work presents
the following contributions:

● We present NArray, a multidimensional distributed array
concept for C++ with strong support for exploiting data
locality and its implementation in DASH

● We implement an efficient variant of the SUMMA algo-
rithm based on the DASH NArray.

● We provide a comprehensive performance evaluation of
the SUMMA implementation against MKL and PLASMA
(DGEMM) as well as ScaLAPACK (PDGEMM).

The remainder of this paper is structured as follows: The
following section outlines considerations on multidimensional
data in PGAS and gives an overview of related work. In
Sec. III we explain fundamental concepts defined in DASH.
Section IV presents the multidimensional distributed array
representation in DASH in depth and illustrates its usage in
common scenarios. To demonstrate its benefit in productive

1http://www.dash-project.org



applications, we show how the DASH NArray allows for a
concise and elegant implementation of the SUMMA algorithm
in Sec. V. We then conduct a comprehensive performance
evaluation in Sec. VI using ScaLAPACK and Intel MKL with
a conclusion in Sec. VII.

II. RELATED WORK

C++ libraries utilizing the PGAS model for parallel pro-
gramming are subject to extensive research, including but not
limited to projects like UPC++, Hierarchically Tiled Arrays
[1], STAPL [2], Charm++ [3], and HPX [4].

UPC++ implements a PGAS language model and, similar to
the array concept in DASH, offers local views for distributed
arrays for rectangular index domains [5]. The UPC++ array
library provides a multidimensional array [6], however it
currently does not allow the distribution of array elements
over multiple processes. This restricts its applicability to
purely local computations. Also, UPC++ provides few data
distribution schemes, in general restricted to cyclic mappings.
In addition, the array abstraction of UPC++ is not compatible
with concepts defined in the C++ Standard Template Library
(STL). Therefore, existing algorithms designed for C++ stan-
dard library containers cannot be applied to UPC++ arrays.

The Global Arrays (GA) toolkit [7] is dedicated to dis-
tributed arrays. Its programming interface is very low-level
compared to our solution, the provided C++ bindings are rather
syntactic adapters for a C function interface.

The HPX runtime system realizes a language model in C++
that is comparable to PGAS and also shares many design
principles with DASH. It does, however, presently not provide
support for multidimensional data.

The Kokkos library [8] provides a multidimensional ar-
ray abstraction but targets intra-node parallelism focusing on
CUDA- and OpenMP backends and thus does not provide
methods for process mapping. It is therefore not applicable to
the PGAS language model where explicit distinction between
local and remote ownership is required.

The fundamental concepts of domain decomposition in
DASH are comparable to DMaps in Chapel [9] with dense
and strided regions like previously defined in ZPL [10]. DASH
in addition incorporates a classification system that allows to
describe domain decomposition by formal properties.

III. DASH CONCEPTS

We refer to concept in this paper as the technical term in
the context of C++ to denote a predicate that expresses a set
of requirements on a type, including syntactic and semantic
conditions [11]. Concept names are capitalized for clarity.

This section explains fundamental concepts in the DASH
library used to express process topology, data distribution, and
iteration spaces.

The DASH run-time uses MPI-3 RMA operations for one-
sided data transfers. A general overview of the DASH library
and its run-time backend is presented in [12] and [13],
respectively.

A. Process Topology: Teams and Units

The execution model of DASH is SPMD (single program,
multiple data) and any logical component in a distributed
memory topology that supports processing and storage is
called a unit. Conventional PGAS approaches offer only the
differentiation between local and global data and distinguish
between private, shared-local, and shared-remote memory.
DASH extends this model by a more fine-grained differen-
tiation that corresponds to hierarchical machine models as
units are organized in hierarchical teams. For example, a
team at the top level could be organized into several node
teams, each again consisting of units corresponding to single
CPU cores. A unit might represent a processes or thread, but
also processing components like accelerators that extent the
hardware hierarchy. Conventional MPI-communicators only
support arrangements on process level.

B. Sequential Containers

DASH follows the C++ STL convention of using iterators as
the primary interface to operate on containers. This compliance
is a crucial requirement as it ensures that any algorithm
defined the C++ std namespace can be applied to any DASH
container. The DASH iterator concepts also allow to express
locality as required in the PGAS model. For example, DASH
iterators can be used to specify multidimensional rectangular
domains and provide domain arithmetic with locality-based
selection criteria.

The most fundamental container in the DASH library is
a distributed one-dimensional array that implements the se-
quential container concept outlined in Table I. A DASH
container is instantiated with the size that declares its
initial global capacity, a process topology descriptor of
type TeamSpec, and an instance of the Pattern concept
that describes distribution of elements among processes.

dash::Array <double > array (1024);
// shared array with 1024 elements , same as
dash::Array <double > array(

dash::SizeSpec <1 >(1024),
dash::TeamSpec <1>(dash::Team::All()),
dash:: BlockPattern <1>(dash:: BLOCKED));

// element range specified using iterators:
auto min = dash:: min_element(array.begin () + 100,

array.begin () + 300);

DASH containers also provide a view on elements local to the
calling unit.

Iterating elements using the local qualifier has no
overhead compared to accessing a raw native pointer:

for (double * p = array.local.begin ();
p != array.local.end(); ++p) { *p = 23.42; }

C. Data Distribution: Patterns

The DASH sequential container concept extends the concept
of the C++ STL by methods to access the container’s distri-
bution pattern which is essential for many PGAS-based algo-
rithms. Regular pattern types partition a global data range into
Blocks that are then mapped to units in the process grid. Blocks



TABLE I
METHODS IN THE DASH SEQUENTIAL CONTAINER CONCEPT

Method Returns Description

begin() GlobIter Iterator at first container element.

end() GlobIter Iterator past the final container element.

local LocalView Local view on container, implements the
referenced container concept.

[pos]
GlobRef
or
View

Subscript operator, references element at
position pos in the container’s iteration
space or refines the current view.

pattern() Pattern Returns instance of Pattern concept that has
been used to distribute container elements.

TABLE II
METHODS IN THE DASH PATTERN CONCEPT

Method Returns Description

local(gi) (Unit,Index) Map given global index gi to unit and
local index.

global(u, li) Index Map given unit and local index to global
index.

block(bi) View Creates a view on block at index bi in
block coordinate space.

lblock(lbi) View Creates a view on block at index bi in
local block coordinate space.

coords(i) Point Map given global index to global
coordinates.

index(c) Index Map given global coordinates to global
index.

are also named Tiles if their elements are contiguous in mem-
ory order. The Pattern concept does not consider data distribu-
tion but only defines the resulting bi-directional mapping be-
tween local and global index space: from global index to block,
from block to process, and from process to physical memory.
The local position of a container element is thus represented by
the unit owning the element and its offset in the unit’s memory:

dash::Array <double > array(NELEM , my_pattern);
auto lpos = array.pattern ().local(gpos);
int unit = lpos.unit;
size_t offs = lpos.offset;
long gpos = array.pattern ().global(unit , offs);

Essential methods of the Pattern concept are listed in Table II.

Pattern types are annotated with traits that describe formal
properties of their data distribution scheme. As an exam-
ple, the balanced partitioning property describes that data
is partitioned into blocks of identical size and the balanced
mapping property denotes that the same number of blocks
is mapped to every unit. Algorithms can be specialized for
pattern properties and use them to specify constraints for
compile-time optimization. The underlying mechanisms are
beyond the scope of this paper and are described in detail
in [14].

IV. MULTIDIMENSIONAL ARRAYS IN DASH

In this section, we explain the NArray concept that defines
the general usage of multidimensional arrays in DASH. Most
important, we explain the expressiveness of view modifiers
that allow the specification of multidimensional regions with
respect to locality.

A. Instantiation and Data Distribution

Domain decomposition, the distribution of container data
among processes, involves two independent concepts in
DASH: the Team Specification to arrange units in a mul-
tidimensional process grid, and the Pattern describing data
partitioning, process mapping of data domains, and finally data
layout in physical memory. To partition a two-dimensional
n × m matrix into blocks of size bn × bm mapped to
a pn × pm process grid, a possible implementation is:

dash::TeamSpec <2> teamspec(pn, pm); // pn x pm process grid
dash::NArray <2, double > // partitioned in tiles of bn x bm:

matrix(n, m, TILED(bn), TILED(bm), teamspec);

The NArray class accepts any type satisfying the Pattern
concept described in Sec. III including user-defined patterns:

dash::NArray <2, double , CustomPattern <2>>
matrix(n, m, CustomPattern <2>(bn, bm), ...);

Concept specifications ensure that algorithms operating on
NArray are not affected by the applied distribution scheme.

B. The NArray Concept

The one-dimensional array presented in Sec III is specified
according to concepts known from the C++ STL. However
the STL does not provide multidimensional containers. The
boost library2 defines the generic N-dimensional array concept
MultiArray that served as a starting point for the design of
dash::NArray and its two-dimensional alias dash::Matrix.

A distributed container concept must also provide means
to specify domain decomposition which are not considered in
boost. In addition, specifying views on data ranges depending
on locality measures is mandatory for PGAS programming.

1) Sub-Domain Views: Table III lists the essential methods
defined in the NArray concept. As NArray types also satisfy
the Container concept, they provide iterator-based element
access using methods begin and end. Most methods do not
execute an actual operation on its values but configure a light-
weight proxy object that acts as a view on NArray elements.
In general, views realize an intersection of the array index
set with a multidimensional domain and represent a subset
of the elements in a referenced container as though it were
a separate container instance. For example, a row slice of
a three-dimensional array can be treated as if it were an
independent two-dimensional matrix. Changes made to view
elements will be reflected in the original container.
NArray views are of type NArrayView<D,Dv,T> for

elements of type T where D denotes the total num-
ber of dimensions of the referenced NArray and Dv

2https://boost.org



TABLE III
METHODS IN THE DASH NARRAY CONCEPT

Method Returns Description

shape() size_t[D] Array size in all dimensions.

extent(d) size_t Array size in dimension d.

sub(d, {b, e}) NArrayView View at array slice in range b to e in
dimension d.

sub(d, o) NArrayView View at array slice at offset o in
dimension d.

row(o) NArrayView View at array row o, same as
sub(0, o).

col(o) NArrayView View at array column o, same as
sub(1, o).

block(b) NArrayView View at block specified by block
coordinates or global block offset b.

[o] NArrayView View at array slice at offset o in the
current view dimension.

Fig. 1. Chaining view modifiers to select a sub-matrix region

the number of dimensions of the view. The concrete
view types can be deduced at compile time using
the auto keyword available since C++11. For example,
the third row of a matrix could be referenced using:

auto row = matrix.row(2);

Instances of NArrayView satisfy the NArray concept and can
thus again act as a representation of type NArray<Dv,T>.
This allows to compose views via method chaining. As an
example, a two-dimensional matrix region can be copied
by passing iterators on a view to the function dash::copy:

auto dom = matrix.sub(0, { 4,7 }).sub(1, { 2,7 });
T * l_copy = new[region.size()];
T * l_copy_end = dash::copy(dom.begin (), dom.end(),

l_copy);

As illustrated in Fig. 1, the global iterators returned by
region.begin() and region.end() are relative to the itera-
tion space defined by the region’s view.

2) Local Views: Most efficient PGAS-based algorithms
facilitate data locality following the owner-computes rule such
that processes predominantly access values in local memory.
All DASH containers provide the member local represent-
ing a local view that only includes container elements in
the calling unit’s address space. To restrict operations on
local elements, it is sufficient to add the local qualifier:

dash::NArray <3> m;
for (auto lp = m.local.begin (); l != m.local.end(); ++l)
{ /* iterate local pointers lp */ }
for (auto lv : m.local)
{ /* iterate local values lv */ }

Figure 2 shows a simplified inheritance graph of all matrix
types and their relation to the sequential container concept.
The illustrated principle applies to DASH container types in
general. As a local view type implements the interface of its
referenced container, local views can act as an independent
container instances. In the following, we illustrate how view
specifiers can be chained to simplify complex operations on
multidimensional data ranges.

Fig. 2. UML diagram illustrating inheritance of DASH container concepts

3) Block Views: Many common matrix algorithms operate
on sub-matrices that correspond to partitions of the matrix
domain decomposition. Block regions could be resolved from
index calculations, however the DASH containers provide
methods to create views on blocks to simplify these use cases.
A matrix block can be referenced by its canonical block offset
or a point in the Cartesian block coordinate space. Figure 3
illustrates the semantics of both notations.

4) Combined Views: The full expressiveness of views is
utilized when combining them in a chain to specify rectan-
gular domains that otherwise require complicated index set
calculations. View chaining is easy to comprehend as views
implement the interface of their referenced container:

dash::Matrix <2, double > matrix;
// First block in matrix assigned to this unit:
auto l_block = matrix.local.block (0);
// Map local block to global index domain , shift column:
auto block_west = l_block.global.shift <1>(-1);
// Copy block to second block at this unit:
dash::copy(block_west.begin (), block_west.end(),

matrix.local.block (1).begin ());
// Select matrix block by process grid coordinates:
auto mblock = matrix.block({ 3, 5 });
double * l_submat = new double[mblock.size()];
double * copy_end = dash::copy(mblock.begin (),

mblock.end(),
l_submat);

Listing 1. Combining DASH algorithms and view specifiers

Fig. 3. Example for block views for local and global data domain. On the
left, domain decomposition and mapping of blocks to units for 2× 3 process
grid and block size 2 × 3. Numbers in blocks represent the unit owning the
block.



Fig. 4. Illustration of domain decomposition and prefetching in the SUMMA
implementation. Numbers in blocks indicate the unit mapped to the block.
Sub-matrix blocks of A and B are requested simultaneously in a step as
indicated by the lines.

V. CASE STUDY: MATRIX-MATRIX PRODUCT

In the following we describe how the common use case of
dense, double-precision matrix-matrix multiplication is imple-
mented in DASH using the matrix concept presented in the
previous section. Our implementation is based on a variant
of the SUMMA algorithm that facilitates latency hiding using
non-blocking, one-sided communication.

A. Implementing SUMMA in DASH

The DASH variant of SUMMA is based on conventional
blocked matrix multiplication. For the calculation C = A×B,
matrices A, B and C are first distributed using a block-cyclic
distribution. Figure 4 illustrates this domain decomposition for
a square matrix for simplicity. Our SUMMA algorithm also
allows rectangular matrices and unbalanced partitioning.

After this decomposition, a matrix is partitioned into sub-
matrices that can be referenced by their respective block
coordinates. We use the notation Mg for matrix regions refer-
enced in global memory space and M l for references in local
memory space in the following. Indices in brackets denote
block coordinates. For example, the second block mapped
to unit 3 in Fig. 4 has coordinates Bg[1,3] and canonical
offset Bg[7] in global block coordinate space. Unit 3 can also
reference this block in local address space with local block
coordinates Bl[0,1] or local canonical block offset Bl[1].

The SUMMA algorithm follows the owner computes prin-
ciple such that every unit computes the multiplication result

Cl
local(i,j) = Ag

ik ×B
g
kj =

K−1

∑
k=0

Ag
ikB

g
kj

for all K sub-matrices Cl local to the unit. To achieve
overlap of communication and computation, blocks of ma-
trices A and B that are required in the next step are pre-
fetched asynchronously. The sub-matrices Ag

ik and Bg
kj re-

quired for the next computation step are requested using
the non-blocking function dash::copy_async that returns an
instance of dash::future and initiates the copy operations in
parallel to the current computation. Before starting the next
computation phase, calling wait() or get() on the future
instance blocks the unit’s execution until the requested data
is locally available.

In the implementation of dash::copy_async, segments of
requested data ranges located on the same processing node are

copied in shared memory without calling the communication
backend. We also optimize throughput of unavoidable copy
operations between processing nodes: when multiple units
copy data from the same processing node, interconnect ca-
pacity is shared among the units. Some MPI implementations
execute concurrent bulk requests to the same MPI process
in sequence. We therefore use a communication schedule
that balances remote copy operations within a single iteration
of the algorithm among all units, similar to the SRUMMA
algorithm [15]. This only required a slight modification to
the algorithm: every unit starts with computation of the local
sub-matrix Cl[k0] where k0 is the unit’s row offset in the
process grid. Figure 4 illustrates this principle for the first two
iterations in the SUMMA algorithm in a simple example: unit
2 and 3, both at row offset 1 in the process grid, each start with
computation of their second local block in matrix C. Without
this technique, all units would simultaneously request the sub-
matrix Ag[0,0] from unit 0 in the first iteration, Ag[0,1] in
the second iteration, and so forth.

Algorithm 1 presents the DASH variant of SUMMA in
pseudo code. The simplified notation only employs the pro-
gramming concepts directly supported by DASH as presented
in Sec. III. The actual implementation in C++ has identical
structure and adds no significant complexity.

Algorithm 1: SUMMA based on the DASH Matrix.
input : Matrix A, Matrix B
output: Matrix C = A ×B

1 k0 ← Team.at(myrank).row
2 // prefetch blocks for first computation:
3 Clocal ← C.local.block(k0)
4 Apref ← A.block(k0, Clocal.col)
5 Bpref ← B.block(Clocal.row, k0)
6 copy(Apref , bufAcomp)
7 copy(Bpref , bufBcomp)
8 kmax ← C.local.blocks().size()
9 foreach k ← k0 + 1 to k0 + kmax do

10 Clocal ← C.local.block(k)
11 Apref ← A.block(k, Clocal.col)
12 Bpref ← B.block(Clocal.row, k)
13 if k < k0 + kmax − 1 then
14 // prefetch blocks for next computation:
15 Afut ← copy_async(Apref , bufAget)

16 Bfut ← copy_async(Bpref , bufBget)

17 end
18 Clocal ← Clocal + multiply(bufAcomp, bufBcomp)
19 Afut.wait()
20 Bfut.wait()
21 swap(bufAget, bufAcomp);
22 swap(bufBget, bufBcomp);
23 end
24 // wait for completion of all processes:
25 barrier();

The local multiplication of sub-matrices, corresponding to



Fig. 5. System diagram of automatic domain decomposition mechanisms in
DASH

line 18 in the pseudo code: Cl
local(i,j) = Ag

ik ×B
g
kj

is performed using serial DGEMM provided by Intel MKL.

B. Automatic Domain Decomposition

If the logical Cartesian arrangement of units is not stated
explicitly, DASH derives the logical topology from hard-
ware locality information automatically in a procedure named
make_team_spec to improve data locality. In this, the process
grid is balanced based on the size of locality scopes such as
NUMA domains. As mentioned in Subsec. III-C, algorithms
like SUMMA declare constraints on data distribution that can
be used to deduce a suitable domain decomposition scheme
automatically. The function make_pattern deduces a pattern
type from given constraints and resolves tiling factors from
user-specified parameters and system locality information as
described in [14]. Figure 5 outlines the interaction of both
mechanisms.

VI. EVALUATION

As with other PGAS languages, DASH works on both
shared- and distributed memory systems. We consider the
scenarios:

Single node: (DGEMM) matrix multiplication on a single
processing node for an increasing number of processes
Multi node: (PDGEMM) distributed matrix multiplica-
tion for an increasing number of processing nodes

We evaluated our implementation in the single node scenario
against multi-threaded Intel MKL and PLASMA [16]. Perfor-
mance in the multi node scenario is compared against ScaLA-
PACK [17]. The evaluated performance metric is double-
precision floating point operations per second (FLOP/s).

1) DASH: DASH provides automatic optimization of pro-
cess topology and domain decomposition according to system
locality information obtained from e.g. PAPI and hwloc [18].
Different from PLASMA and ScaLAPACK, tile sizes and
Cartesian arrangement of units used in all benchmarks of the
DASH implementation have been obtained without manual
tuning using methods mentioned in Subsec. V-B.

2) PLASMA: PLASMA currently does not detect NUMA
specification of the system and does not optimize for node-
level memory hierarchy. Performance may therefore be poor
if matrices are not distributed among multiple memory nodes.
PLASMA allows to specify tile sizes for domain decom-
position which significantly affect performance, however no

autotuning capabilities are provided at the time of this writing.
We resort to pruning methods recommended in the PLASMA
Users’ Guide3 to obtain good parameters for tile sizes.

3) Intel MKL: Intel MKL does not optimize for NUMA
effects. Tile sizes cannot be specified and are therefore not
tuned.

4) ScaLAPACK: (Scalable LAPACK) is a library of linear
algebra routines for parallel distributed memory machines.
Its communication backend for distributed computation is
based on two-sided message-passing. We expect that non-
blocking RDMA in our implementation significantly reduces
synchronization points among units and enables latency hiding
by overlapping communication with computation.

A. Benchmark Environment

We evaluate measurements from benchmarks on different
systems and for different MPI implementations to substantiate
the significance of the presented results. In the following we
briefly discuss the benchmark environments which differ in
interconnect topology and hardware specifications.

1) SuperMUC: The SuperMUC phase 2 system4 employs
an Infiniband fat tree topology interconnect. Benchmarks have
been executed with the Intel MPI and IBM MPI implemen-
tations which exhibit characteristic advantages and disadvan-
tages:

● The installation of IBM MPI does not support MPI
shared windows, effectively disabling shared memory
optimization in the DASH runtime for copying, but offers
the most efficient non-blocking RDMA.

● Intel MPI requires additional polling processes for asyn-
chronous RDMA which increases overall communication
latency but improved performance of MKL.

2) Cori: Cori phase 15 is a Cray system with an Aries
dragonfly topology interconnect. An installation of PLASMA
is not available.

We repeated all benchmark variations with various run-
time configurations and only consider the best results of every
evaluated implementation to provide a fair comparison to the
best of our abilities.

B. Results

Figures 6 and 7 show measured TFLOP/s in the single-node
scenario for Intel MPI and IBM MPI on SuperMUC phase 2.
With IBM MPI, DASH cannot exploit MPI shared window
optimization. However, even in this pessimistic setup MKL
and PLASMA only achieve better performance in singular
cases.

As PLASMA does not optimize for NUMA, we tried
different configurations of numactl as suggested in the official
documentation of PLASMA6. It showed better scalability than
Intel MKL, despite the lack of optimization for NUMA in both
implementations. However, it is important to note that the ideal

3http://icl.cs.utk.edu/projectsfiles/plasma/pdf/users_guide.pdf
4https://www.lrz.de/services/compute/supermuc/systemdescription/
5http://www.nersc.gov/users/computational-systems/cori/cori-phase-i/
6http://icl.cs.utk.edu/projectsfiles/plasma/html/README.html



Fig. 6. Strong scaling of matrix multiplication on single node for 4 to 28 cores with increasing matrix size NxN on SuperMUC phase 2, Intel MPI

Fig. 7. Strong scaling of matrix multiplication on single node for 4 to 28 cores with increasing matrix size NxN on SuperMUC phase 2, IBM MPI

Fig. 8. Strong scaling of matrix multiplication on single node for 4 to 32 cores with increasing matrix size NxN on Cori phase 1, Cray MPICH

tile size for PLASMA had to be obtained in a large series of
tests for every variation of number of cores and matrix size.
FLOP/s achieved in the average case were significantly lower
than the presented results which only reflect the best cases of
all executions.

On Cori phase 1, DASH achieved up to double the perfor-
mance of Intel MKL when the number of processors was not
a power of two.

In the multi-node scenario, our implementation surpassed
ScaLAPACK for both Intel MPI and IBM MPI. The less
efficient remote memory access in Intel MPI had similar effect
on performance of ScaLAPACK and DASH.

In conclusion, the DASH implementation consistently out-
performed all tested variants of DGEMM and PDGEMM on
distributed- and shared memory scenarios in all configurations

Fig. 9. Strong scaling of dash::summa and PDGEMM (ScaLAPACK) for
matrix size 57344 × 57344 on SuperMUC phase 2 for IBM MPI and Intel
MPI



Fig. 10. Process states traced in execution of SUMMA for 16 processes
and matrix sizes 2680x2680. Horizontal bars represent time lines of single
processes.

of both benchmark environments.
To confirm our assumptions on the high degree of la-

tency hiding, we further inspected how computations and
communication overlap in the SUMMA implementation and
repeated the benchmarks with light-weight event tracing. The
analysis of trace data indeed confirmed the expected overlap of
communication and computation. An exemplary visualization
of program traces obtained in executions of SUMMA is shown
in Fig. 10.

VII. SUMMARY AND CONCLUSIONS

We presented a multidimensional array abstraction and
fundamental concepts provided by DASH that allow to specify
multidimensional rectangular domains with specific focus on
locality. With the SUMMA algorithm as an example, we
demonstrated how the DASH NArray simplifies the design
of efficient algorithms due to its explicit support for locality-
based operations.

Our reference implementation proved as highly compet-
itive against the popular solutions Intel MKL, PLASMA,
and ScaLAPACK in node-level as well as highly distributed
applications and achieves good latency hiding.

As the most notable result, the implementation based on the
NArray abstraction clearly showed the best portable efficiency
among the evaluated alternatives and did not require any
parameter tuning.

Re-implementing functions integrated in ScaLAPACK and
PLASMA as demonstrated for DGEMM in this work is not
a reasonable goal, but we are positive that DASH can help to
maintain portable efficiency of existing implementations. In
future work we further investigate how existing linear algebra
software can benefit from capabilities of DASH to improve
performance and productivity.

Finally, the NArray concept facilitates portable optimization
for heterogeneous systems, a first class scenario for DASH.
An evaluation for Intel MIC (Xeon Phi) is currently in active
development.

ACKNOWLEDGMENT

We gratefully acknowledge funding by the German Re-
search Foundation (DFG) through the German Priority Pro-
gramme 1648 Software for Exascale Computing (SPPEXA).

REFERENCES

[1] G. Bikshandi, J. Guo, D. Hoeflinger, G. Almasi, B. B. Fraguela, M. J.
Garzarán, D. Padua, and C. Von Praun, “Programming for parallelism
and locality with hierarchically tiled arrays,” in Proceedings of the
eleventh ACM SIGPLAN symposium on Principles and practice of
parallel programming. ACM, 2006, pp. 48–57.

[2] A. Buss, I. Papadopoulos, O. Pearce, T. Smith, G. Tanase, N. Thomas,
X. Xu, M. Bianco, N. M. Amato, L. Rauchwerger et al., “STAPL:
standard template adaptive parallel library,” in Proceedings of the 3rd
Annual Haifa Experimental Systems Conference. ACM, 2010, p. 14.

[3] L. V. Kale and S. Krishnan, CHARM++: a portable concurrent object
oriented system based on C++. ACM, 1993, vol. 28, no. 10.

[4] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey,
“HPX: A task based programming model in a global address space,” in
Proceedings of the 8th International Conference on Partitioned Global
Address Space Programming Models. ACM, 2014, p. 6.

[5] A. Kamil, Y. Zheng, and K. Yelick, “A local-view array library for
partitioned global address space C++ programs,” in Proceedings of
ACM SIGPLAN International Workshop on Libraries, Languages, and
Compilers for Array Programming. ACM, 2014, p. 26.

[6] Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and K. Yelick, “UPC++:
a PGAS extension for C++,” in Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International. IEEE, 2014, pp. 1105–
1114.

[7] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and
E. Aprà, “Advances, applications and performance of the global arrays
shared memory programming toolkit,” International Journal of High
Performance Computing Applications, vol. 20, no. 2, pp. 203–231, 2006.

[8] H. C. Edwards, D. Sunderland, V. Porter, C. Amsler, and S. Mish,
“Manycore performance-Portability: Kokkos Multidimensional Array
Library,” Scientific Programming, vol. 20, no. 2, pp. 89–114, 2012.

[9] B. L. Chamberlain, S.-E. Choi, S. J. Deitz, D. Iten, and V. Litvinov,
“Authoring user-defined domain maps in Chapel,” in CUG 2011, 2011.

[10] B. L. Chamberlain, S.-E. Choi, E. C. Lewis, C. Lin, L. Snyder, and W. D.
Weathersby, “ZPL: A machine independent programming language
for parallel computers,” Software Engineering, IEEE Transactions on,
vol. 26, no. 3, pp. 197–211, 2000.

[11] B. Stroustrup, A. Sutton, L. Voufo, and M. Zalewski, “A concept design
for the STL,” ISO/IEC JTC1/SC22/WG21 document N, vol. 3351, 2012.

[12] K. Fürlinger, C. Glass, A. Knüpfer, J. Tao, D. Hünich, K. Idrees,
M. Maiterth, Y. Mhedeb, and H. Zhou, “DASH: Data structures and
algorithms with support for hierarchical locality,” in Euro-Par 2014
Workshops (Porto, Portugal), 2014.

[13] H. Zhou, Y. Mhedheb, K. Idrees, C. Glass, J. Gracia, K. Fürlinger,
and J. Tao, “Dart-mpi: An mpi-based implementation of a pgas runtime
system,” in The 8th International Conference on Partitioned Global
Address Space Programming Models (PGAS), Oct. 2014.

[14] T. Fuchs and K. Fürlinger, “Expressing and Exploiting Multidimensional
Locality in DASH,” to appear in Proceedings of the SPPEXA Sympo-
sium 2016, Garching, Germany, January 2016.

[15] M. Krishnan and J. Nieplocha, “SRUMMA: a matrix multiplication
algorithm suitable for clusters and scalable shared memory systems,”
in Parallel and Distributed Processing Symposium, 2004. Proceedings.
18th International. IEEE, 2004, p. 70.

[16] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov, “Numerical linear algebra on
emerging architectures: The plasma and magma projects,” in Journal of
Physics: Conference Series, vol. 180, no. 1. IOP Publishing, 2009, p.
012037.

[17] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet,
K. Stanley, D. Walker, and R. C. Whaley, “ScaLAPACK: A portable
linear algebra library for distributed memory computers - Design issues
and performance,” in Applied Parallel Computing Computations in
Physics, Chemistry and Engineering Science. Springer, 1995, pp. 95–
106.

[18] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, and R. Namyst, “hwloc: A generic framework
for managing hardware affinities in HPC applications,” in 2010 18th
Euromicro Conference on Parallel, Distributed and Network-based Pro-
cessing. IEEE, 2010, pp. 180–186.


