
Detection and Analysis of Iterative Behavior in
Parallel Applications

Karl Fürlinger and Shirley Moore

Innovative Computing Laboratory,
Department of Electrical Engineering and Computer Science,

University of Tennessee
{karl, shirley}@eecs.utk.edu

Abstract. Many applications exhibit iterative and phase based behav-
ior. We present an approach to detect and analyze iteration phases in
applications by recording the control flow graph of the application and
analyzing it for loops that represent iterations. Phases are then man-
ually marked and performance profiles are captured in alignment with
the iterations. By analyzing how profiles change between capture points,
differences in execution behavior between iterations can be uncovered.
Key words: Phase detection, control flow graph, continuous profiling

1 Introduction

Many applications exhibit iterative and phase based behavior. Typical examples
are the time steps in a simulation and iteration until convergence in a linear
solver. With respect to performance analysis, phase knowledge can be exploited
in several ways. First, repetitive phases offer the opportunity to restrict data
collection to a representative subset of program execution. This is especially
beneficial when tracing is used due to the large amounts of performance data and
the challenges involved with capturing, storing, and analyzing it. Conversely, it
can be interesting to see how the iterations differ and change over time to expose
effects such as cache pollution, operating system jitter and other sources that
can cause fluctuations in execution time of otherwise identical iterations.

In this paper we present an approach to detection and analysis of phases
in threaded scientific applications. Our approach assists in the detection of the
phases based on the control flow graph of the application if the developer is not
already familiar with the code’s structure. To analyze phase-based performance
data we modified an existing profiling tool for OpenMP applications. Based on
markups in the code that denote the start and end of phases, the profiling data
is dumped to a file during the execution of the application (and not only at the
end of the program run) and can be correlated to the application phases.

The rest of this paper is organized as follows. Section 2 describes the tech-
nique we used to assist the developer in detecting iterative application phases. In
Sect. 3 we describe the analysis of performance data based on phases using the
existing profiling tool called ompP. In Sect. 4 we describe an example of applying
our technique to a benchmark applications, in Sect. 5 we describe related work
and conclude in Sect. 6.

2 Iterative Phase Detection

Our approach to identify iterative phases in threaded applications is based on
the monitoring and analysis of the control flow graph of the application. For
this, we extended our profiling tool ompP

ompP [1] is a profiling tool for OpenMP applications that supports the in-
strumentation and analysis of OpenMP constructs. For sequential and MPI ap-
plications it can also be used for profiling on the function level and the phase
detection described here is similarly applicable. ompP keeps profiling data and
records a call graph of an application on a per-thread basis and reports the
(merged) callgraph in the profiling report.

Unfortunately, the callgraph of an application (recording caller–callee rela-
tionships and also the nesting of OpenMP regions) does not contain enough
information to reconstruct the control flow graph. However, a full trace of func-
tion execution is not necessary either. It is sufficient that for each callgraph node
a record is kept that lists all predecessor nodes and how often the predecessors
have been executed. A predecessor node is either the parent node in the callgraph
or a sibling node on the same level. A child node is not considered a predecessor
node because the parent–child relationship is already covered by the callgraph
representation. An example of this is shown in Fig. 1. The callgraph (lower part
of Fig. 1) shows all possible predecessor nodes of node A in the CFG. They are
the siblings B and C, and the parent node P . The numbers next to the nodes in
Fig. 1 indicate the predecessor nodes and counts after one iteration of the outer
loop (left hand side) and at the end of the program execution (right hand side),
respectively.

P() {

 for(i=1; i<5; i++) {

 A();

 B();

 C();

 }

}

 P

 +-A

 | +-X

 | +-Y

 +-B

 +-C

 +-Z

(P:1)

(A:1)

(X:1)

(A:1)

(B:1)

(C:1)

 P

 +-A

 | +-X

 | +-Y

 +-B

 +-C

 +-Z

(P:1,C:4)

(A:5)

(X:5)

(A:5)

(B:5)

(C:5)

A() {

 X();

 Y();

}

C() {

 Z();

}

predecessor

list

predecessor

list

Fig. 1. Illustration of the data collection process to reconstruct the control flow graph.

Implementing this scheme in ompP was straightforward. ompP already keeps
a pointer to the current node of the callgraph (for each thread) and this scheme

is extended by keeping a previous node pointer as indicated above. Again this
information is kept on a per-thread basis, since each thread can have its own
independent callgraph as well as flow of control.

The previous pointer always lags the current pointer one transition. Prior to
a parent → child transition, the current pointer points to the parent while the
previous pointer either points to the parent’s parent or to a child of the parent.
The latter case happens when in the previous step a child was entered and exited.
In the first case, after the parent → child transition the current pointer points
to the child and the previous pointer points to the parent. In the latter case the
current pointer is similarly updated, while the prior pointer remains unchanged.
This ensures that the previous nodes of siblings are correctly handled.

With current and previous pointers in place, upon entering a node, infor-
mation about the previous node is added to the list of previous nodes with an
execution count of 1, or, if the node is already present in the predecessor list, its
count is incremented.

The data generated by ompP’s control flow analysis can be displayed in two
forms. The first form visualizes the control flow of the whole application, the sec-
ond is a layer-by-layer approach. The full CFG is useful for smaller applications,
but for larger codes it can quickly become too large to comprehend and cause
problems for automatic layout mechanisms. An example of an application’s full
control flow is shown in Fig. 2 along with the corresponding (pseudo-) source
code.

0|1

0|1 0|9

0|1

0|1

R00004.0 USER REGION
main.c (43-58) ('main')

bodyT: (0.00, 0.00, 0.00, 0.00)
(+)

R00001.0 USER REGION
main.c (20-22) ('init')

bodyT: (0.00, 0.00, 0.00, 0.00)

R00005.0 PARALLEL
main.c (49-52)

bodyT: (0.00, 0.00, 0.00, 0.00)
exitBarT: (0.00, 0.00, 0.00, 0.00)

R00002.0 USER REGION
main.c (27-29) ('fini')

bodyT: (0.00, 0.00, 0.00, 0.00)

main(){

 init();

 for(...) {

 #pragma omp parallel

 }

 fini();

}

Fig. 2. An example for a full control flow display of an application.

Rounded boxes represent source code regions. That is, regions correspond-
ing to OpenMP constructs, user-defined regions or automatically instrumented
functions. Solid horizontal edges represent the control flow. An edge label like
i|n is to be interpreted as thread i has executed that edge n times. Instead of
drawing each thread’s control flow separately, threads with similar behavior are
grouped together. For example the edge label 0–3|5 means that threads 0, 1, 2,
and 3 executed that edge 5 times. This greatly reduces the complexity of the
control flow graph and makes it easier to understand.

Based on the control flow graph, the user has to manually mark the start
and end of iterative phases. To mark the start of the phase the user adds the
directive phase start, to mark the end phase end.

3 Iterative Phase Analysis

The phase based performance data analysis implemented in ompP works by cap-
turing profiling snapshots that are aligned with the start and end of program
phases. Instead of dumping a profiling report only at the end of the program
execution, the reports are aligned with the phases and the change between cap-
ture points can be correlated to the activity in the phase. This technique is a
modification of the incremental profiling approach described in [2] where profiles
are captured in regular intervals such as 1 second.

The following performance data items can be extracted from phase-aligned
profiles and displayed to the user in the form of 2D graphs.

Overheads ompP classifies wait states in the execution of the OpenMP applica-
tion into four overhead classes: synchronization, limited parallelism, thread
management and work imbalance. Instead of reporting overall, aggregated
overhead statistics, ompP’s phase analysis allows the correlation of overheads
that occur in each iteration. This type of data can be displayed as two-
dimensional graphs, where the x-axis correlates to execution time and the
y-axis displays overheads in terms of percentage of execution time lost. The
overheads can be displayed both for the whole application or for each parallel
region separately. An example is show in Fig. 5.

Execution Time The amount of time a program spends executing a certain
function or OpenMP construct can be displayed over time. Again, this dis-
play shows line graphs where the x-axis represents (wall clock) execution
time of the whole application while the y-axis shows the execution time of
a particular function or construct. In most cases it is most useful to plot
the execution time sum over all threads, while it is also possible to plot a
particular thread’s time, the minimum, maximum or average of times.

Execution Count Similar to the execution time display, this view shows when
certain constructs or functions got executed, but instead of showing the
execution time spent, the number of invocations or executions is displayed
in this case.

Hardware Counters ompP is able to capture hardware performance counters
through PAPI [3]. Users selects a counter they want to measure and ompP
records this counter on a per-thread and per-region basis. Hardware counter
data can best be visualized in the form of heatmaps, where the x-axis dis-
plays the time and the y-axis corresponds to the thread id. Tiles display the
normalized counter values with a color gradient or gray scale coding. An
example is show in Fig. 4.

4 Example

In this example we apply the phase detection and analysis technique to a bench-
mark from the OpenMP version (3.2) of the NAS parallel benchmark suite. All
experiments have been conducted on an four processor AMD Opteron based
SMP system. The application we chose to demonstrate our technique is the CG
application which implements the conjugate gradient technique.

The CG code performs several iterations of an inverse power method to find
the smallest eigenvalue of a sparse, symmetric, positive definite matrix. For each
iteration a linear system Ax = y is solved with the conjugate gradient method.

0|1 0|1

0|1

0|10|10|1 0|1
R00001.0 R00022.0 R00023.0 R00024.0 R00025.0 R00002.0

0|10|1 0|1

0|1824

0|76

0|74 0|75

0|76

0|1

0|75

R00011.0 R00008.0

R00010.0

R00014.0 R00019.0 R00006.0 R00007.0

R00009.0

Fig. 3. (Partial) control flow graph of the CG application (size C).

Fig. 3 shows the control flow graph of the CG application (size C). To save
space, only the region identification numbers Rxxxx are shown in this example,
in reality the control flow nodes show important information about the region
such as region type, location (file name and line number) and execution statistics
in addition. Evidently the control flow graph shows an iteration that is executed
76 times where one iteration takes another path than the others. This is the
outer iteration of the conjugate gradient solver which is executed 75 times in the
main iteration and once for initialization.

Using this information (and the region location information) it is easy to
identify the iterative phase in the source code. We marked the start and end of
each iteration with an phase start directive and each end the ends with a phase
end directive. Using directives (compiler pragmas in C/C++ and special style
comments in FORTRAN) similar to OpenMP directives has the advantage that
the normal (non-performance analysis) build process is not interrupted while
the directives are translated into calls that cause ompP to capture profiles when
performance analysis is done and ompP’s compiler wrapper script translates the
directives into calls implemented by ompP’s monitoring library.

Fig. 4 shows the overheads over time display of for the iterations of the
CG application with problem size C. Evidently, the only significant overhead
identified by ompP is imbalance overhead and the overhead does not change
much from iteration to iteration with the exception of two peaks. The most

0 92 185 278 371 463 556 649 742 834 927

5.25

4.72

4.20

3.67

3.15

2.62

2.10

1.57

1.05

0.53

0.00

sync

imbal

limpar

mgmt

Overheads (%)

Execution time (seconds)

Fig. 4. Overheads of the iterations of the CG application. X-axis is wallclock execution
time in seconds, while th y-axis represents the percentage of execution time lost due
to overheads.

likely reason for these two peaks is operating system jitter, since the iterations
are otherwise identical in this example.

0 10 20 30 40 50 60 70

4
9
9
0
0
0
0
0

4
9
9
9
0
0
0
0

5
0
0
8
0
0
0
0

5
0
1
7
0
0
0
0

5
0
2
6
0
0
0
0

5
0
3
5
0
0
0
0

5
0
4
4
0
0
0
0

5
0
5
3
0
0
0
0

5
0
6
2
0
0
0
0

5
0
7
1
0
0
0
0

5
0
8
0
0
0
0
0

0

1

2

3

Fig. 5. Performance counter heatmap of the CG application. X-axis is phase or iteration
number, the y-axis corresponds to the thread ID.

Fig. 5 shows the heatmap display of the CG application with four threads.
The measured counter is PAPI FP OPS. In order to visually compare values, ab-
solute values are converted into rates. The first column of tiles corresponds to
the initialization part of the code which features a relatively small number of
floating point operations, the other iterations are of about equal size but show
some difference in floating point rate of execution.

5 Related Work

Control flow graphs are an important topic in the area of code analysis, gener-
ation, and optimization. In that context, CFGs are usually constructed based

on a compiler’s intermediate representation (IR) and are defined as directed
multi-graphs with nodes being basic blocks (single entry, single exit) and nodes
representing branches that a program execution may take (multithreading is
hence not directly an issue). The difference to the CFGs in our work is primarily
twofold. First, the nodes in our graphs are generally not basic blocks but larger
regions of code containing whole functions. Secondly, the nodes in our graphs
record transitions that have actually happened during the execution and do also
contain a count that shows how often the transition occurred.

Detection of phases in parallel programs has previously been applied primar-
ily in the context of message passing applications. The approach of Casas-Guix
et al. [4] works by analyzing the autocorrelation of message passing activity in
the application, while our approach works directly by analyzing the control flow
graph of the application.

6 Conclusion

We have presented an approach for detecting and analyzing the iterative and
phase-based behavior in threaded applications. The approach works by recording
the control flow graph of the application and analyzing it for loops that represent
iterations. This help of the control flow graph is necessary and useful if the
person optimizing the code is not the code developer and does not have intimate
knowledge.

With identified phase boundaries, the user marks the start and end of phases
using directives. We have extended a profiling tool to support the capturing of
profiles aligned with phases. In analyzing how profiles change between capture
points, differences in execution behavior between iterations can be uncovered.

References

1. Fürlinger, K., Gerndt, M.: ompP: A profiling tool for OpenMP. In: Proceedings
of the First International Workshop on OpenMP (IWOMP 2005), Eugene, Oregon,
USA (2005)

2. Fürlinger, K., Dongarra, J.: On using incremental profiling for the performance
analysis of shared memory parallel applications. In: Proceedings of the 13th Interna-
tional Euro-Par Conference on Parallel Processing (Euro-Par ’07). (2007) accepted
for publication.

3. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.J.: A portable programming
interface for performance evaluation on modern processors. Int. J. High Perform.
Comput. Appl. 14 (2000) 189–204

4. Casas-Guix, M., Badia, R.M., Labarta, J.: Automatic phase detection of MPI ap-
plications. In: Proceedings of the 14th Conference on Parallel Computing (ParCo
2007), Aachen and Juelich, Germany (2007)

