
OpenMP-centric Performance Analysis of Hybrid
Applications

Karl Fürlinger 1,2, Shirley Moore 1

1 Innovative Computing Laboratory
EECS Department, University of Tennessee, Knoxville

37996 Knoxville, TN, U.S.A.
2 Computer Science Division

EECS Department, University of California, Berkeley
94720 Berkeley, CA, U.S.A.

1 {karl,shriley}@eecs.utk.edu 2 fuerling@eecs.berkeley.edu

Abstract—Several performance analysis tools support hybrid
applications. Most originated as MPI profiling or tracing tools
and OpenMP capabilities were added to extend the performance
analysis capabilities for the hybrid parallelization case. In this
paper we describe our experience with the other path to support
both programming paradigms. Our starting point is a profiling
tool for OpenMP called ompP that was extended to handle MPI
related data. The measured data and the method of presentation
follow our focus on the OpenMP side of the performance opti-
mization cycle. For example, the existing overhead classification
scheme of ompP was extended to cover time in MPI calls as a
new type of overhead.

I. INTRODUCTION

The widespread adoption of multicore CPU designs in
current and upcoming parallel computing systems of all sizes
has far-reaching effects on how those systems can optimally
be utilized by domain scientists to advance their research.

For application developers, multicore means that they are
faced with an increasingly large number of computing cores
arranged in hierarchies (e.g., core, chip, SMP node, NUMA
node, and cluster) that share different types of resources.
It has been suggested that a flat MPI model might not be
the best fit for such machines with deep hierarchies and
that instead the programming paradigm should follow the
hierarchical principle too. The most promising choices for such
a hierarchical combination are MPI as a distributed computing
paradigm and OpenMP for shared memory parallelism.

Several performance analysis tools support hybrid applica-
tions. Most originated as MPI profiling or tracing tools and
OpenMP capabilities were added to extend the performance
analysis capabilities for the hybrid parallelization case. In
this paper we describe our experience with the other path to
support both programming paradigms. Our starting point is a
profiling tool for OpenMP called ompP that was extended to
handle MPI related data. The measured data and the method
of presentation follow our focus on the OpenMP side of the
performance optimization cycle. For example, the existing
overhead classification scheme of ompP was extended to cover
time in MPI calls as a new type of overhead.

The rest of this paper is organized as follows. In Sect. II-A
we first describe the existing capabilities of ompP. The ex-

tensions for MPI monitoring and data presentation are then
discussed in Sects. II-B1 and II-B3, respectively. Sect. III
shows examples of how the delivered data can be utilized
in various hybrid programming scenarios. We discuss related
work in Sect. IV and give an outlook on planed future
extensions in Sect. V.

II. PERFORMANCE ANALYSIS OF HYBRID APPLICATIONS

A. OpenMP Profiling with ompP

ompP is a profiling tool for OpenMP applications designed
for Unix-like systems. ompP differs from other profiling tools
like gprof [1] or OProfile [2] in primarily two ways. Firstly,
ompP is a measurement-based profiler and does not use pro-
gram counter sampling. The instrumented application invokes
ompP monitoring routines that enable a direct observation of
program execution events (like entering or exiting a critical
section). An advantage of the direct approach is that the results
give exact counts, rather than sampled values, and hence they
can also be used for correctness testing, for example to check
that a critical section is indeed executed a prescribed number
of times.

The second difference lies in the way of data collection
and representation. While general profilers work on the level
of functions, basic blocks, or statements, ompP collects and
displays performance data in the user model of the execution
of OpenMP events [3]. For example, the data reported for
critical section contains not only the execution time but also
lists the time to enter and exit the critical construct (enterT
and exitT, respectively) as well as the accumulated time
each thread spends inside the critical construct (bodyT) and
the number of times each thread enters the construct (execC).
An example profile for a critical section extended with MPI-
level profiling data is given in Fig. 1.

B. Adding Support for MPI monitoring in ompP

As ompP is a tool for OpenMP, profiling data is gathered
on a per-thread basis for OpenMP constructs, functions and
user-defined regions. The entire application is implicitly as-
sumed to consist of one process that hosts the threads of
execution. For MPI, the execution model prescribes that the

R00002 main.c (20-23) (unnamed) CRITICAL
TID execT execC bodyT enterT exitT

0 1.00 1 1.00 0.00 0.00
1 3.01 1 1.00 2.00 0.00
2 2.00 1 1.00 1.00 0.00
3 4.01 1 1.00 3.01 0.00

SUM 10.02 4 4.01 6.01 0.00

Fig. 1: Profiling data delivered by ompP for a critical section.

parallel application consists of a number of processes which
communicate with messages. Since there are already a number
of tools (e.g., TAU [4], Vampir [5], Scalasca [6], mpiP [7])
that can give the user a great deal of information about the
messaging characteristics of the application, we have decided
to limit ourselves to MPI extensions that represent an added
benefit for an OpenMP-centric performance analysis instead
of replicating the functionality of the existing tools. Our
goals is to give rough MPI-level data that is anchored in the
OpenMP-level of thinking of application development, more
sophisticated MPI tools can then be used to drill deeper into
the MPI data if this is desired.

From the OpenMP standpoint, a hybrid application can be
seen as being comprised of a number of copies of an OpenMP-
parallel processes that happen to use MPI mechanisms for
work distribution, synchronization, and result gathering. Ques-
tions such as
• “Do the application OpenMP process copies behave

uniformly or are there significant differences between
them?”,

• “If there are differences, where do they come from?”,
• “Can the variance be related to the MPI-level work

assignment (domain decomposition) or does it have other
reasons?”,

• “Which OpenMP level overheads do the application pro-
cesses exhibit and what is their source?”,

are the interesting in this context and hard to answer with
existing tools.

1) Monitoring Support for MPI: Similar to other MPI tools,
ompP uses the profiling interface to interpose the monitoring
library between the application code and the MPI library.
OmpP monitors data like the number of calls, the send and
receive volume and the time spent in MPI calls. To enable a
thread safe monitoring of the MPI activity, we have chosen
to follow the following approach: much like there is a contin-
uously increasing value of a “time” variable that is sampled
on entry (tstart) and exit (tend) from routines, and used to
increment the accumulated overall execution time by (tend-
tstart), ompP keeps thread local MPI-related counters that are
incremented in the MPI monitoring calls.
ompP determines the receive and send volume (more on this

below) and the time spent in the MPI calls. Then, as shown
in an example in Fig. 2, the counters for sent data volume
in, received data volume, MPI time and execution count are
updated for the thread that executes the MPI call.

The OpenMP profiling code reading wall-clock timestamps

int MPI_Barrier(MPI_Comm comm) {
...
tid = THREADID();

tstart = TIMESTAMP();
res = PMPI_Barrier(comm);
tend = TIMESTAMP();

ncoll[tid]++;
tMPI[tid] += tend-tstart;

return res;
}

Fig. 2: MPI related counter variables (ncoll, tMPI) are incre-
mented in the MPI monitoring call of ompP.

void region_enter(reg_t reg) {
...
tid = THREADID();
reg.tenter

exec [tid]=TIMESTAMP();
reg.tenter

MPI [tid]=tMPI[tid];
reg.volenter

send [tid]=volsend[tid];
reg.volenter

recv [tid]=volrecv[tid];
...

}

void region_exit(reg_t reg) {
...
tid = THREADID();
reg.texec[tid]+=(TIMESTAMP()-

reg.tenter
exec [tid]);

reg.tMPI[tid]+=(TIMESTAMP()-
reg.tenter

MPI [tid]);
reg.volsend[tid]+=volsend[tid]-

reg.volenter
send [tid];

...
}

Fig. 3: The OpenMP monitoring code of ompP was extended
to read the MPI variables (volsend, tMPI ,...) in addition to
reading timestamps and hardware counter data.

and hardware counter values was subsequently modified to
also read the MPI related counters. An example of this is
shown in Fig. 3. In the region_enter call the current val-
ues are recorded in region-local variables such as tenter

MPI [tid].
In the region_exit call the recorded enter values are
subtracted from the current values and the difference is used
to update the region statistics.

As the same thread either executes an MPI_* call (where
data is updated or incremented) or a call related to the OpenMP
monitoring (where data is read) there is no danger of a race
condition.

The technique described above allows the user to correlate

MPI activity to the constructs that are monitored by ompP.
Those are all OpenMP constructs (like parallel regions and
critical sections) and functions, other regions can be instru-
mented manually by the user to show up in ompP’s profiling
report.

2) Determination of the Data Volume: Almost all existing
MPI performance analysis tools have the capability to report
sent and received data volume on a per process basis. For point
to point communication operations the derivation of these
quantities is straight forward, but for collectives, the actual
amounts of data sent or received depend on the implementation
and are not observable from the PMPI profiling layer interface.
Consider for example an MPI Bcast call of n bytes in a
communicator with p ranks. Clearly, each process (except the
root) has to receive the n bytes, but how much data is sent
by each process? MPI Bcast could be implemented by p− 1
sends originating at the root rank, in which case the root rank
would have a send volume of n× (p−1). In another scenario,
MPI Bcast could be implemented in a pipeline fashion, where
each process sends the data to exactly one neighbor processor
until it reaches the last one. In this case each rank would only
have a send volume of n bytes.

With most MPI library implementations, the broadcast op-
eration will actually be implemented using a tree, but at the
level of the MPI profiling layer such details are not visible.
Practically, the only two options for determining send and
receive volumes for collective operations are a naive scenario
which assumes a simplistic implementation (p − 1 point-to-
point operations in the broadcast example) and a minimal
setting. The minimal approach takes only into account data
transfers that have to occur logically, from a local per-process
perspective. In the broadcast example, the data has to appear
at each process, hence the receive count is n, the data also
has to leave the root node, hence the send volume is n at the
root node.

The table in Fig. 4 shows which MPI calls are monitored by
ompP and which data volumes are reported. dsize corresponds
to the data size, i.e., the size of the MPI Datatype used times
the count argument. dsize is used if only one data type and
count is used, while rsize and ssize are used when two data
types and counts can be specified in the call (one for receiving
and one for sending, respectively). The data in the table is
meant to be interpreted locally, i.e., a process that execute
an MPI call determines the data volume locally according to
the table. The “v” variants and MPI Reduce scatter allow the
specification of varying amounts of data sent/received for peer
processes. dsize[i] corresponds to the data volume for process
i in this case.

A detailed comparison of the accounting schemes imple-
mented in other tools is beyond the scope of this paper. For
simple calls, we have discovered no difference between our
naive accounting scheme with other MPI tools, while for more
complicated calls such as MPI Scan such differences exist.

3) Result Presentation: OmpP’s profiling report output was
modified in several places to display the MPI related data.
The header of ompP’s profiling report now gives overall MPI

Start Date : Wed Apr 23 14:39:57 2008
End Date : Wed Apr 23 14:40:16 2008
Duration : 18.29 sec
Application Name: smg2000.ompp
Type of Report : final
User Time : 25.91 sec
System Time : 10.32 sec
Max Threads : 2
ompP Version : 0.6.99
ompP Build Date : Apr 23 2008 14:38:30
PAPI Support : not available
MPI my rank : 1
MPI num procs : 2
MPI hostname : battlecat1
MPI time : 11.028286
MPI bytes in : 3381964
MPI bytes out : 3308644
MPI recv calls : 20700
MPI send calls : 20700
MPI collectives : 17

Fig. 5: The profiling report header with data related to the
MPI execution.

information such as the total number of MPI processes and the
rank and host name of the writing process (cf. 5). Currently,
each MPI process writes a separate profiling report and a set
of utilities are provided that take a group of reports and output
MPI related data as described in this section and Sect. III. The
header also lists the total time in MPI routines, the number of
MPI calls broken down into sends, receives and collectives,
and the overall data volume that is sent and received.

In the basic flat and callgraph region profiles, regions
having MPI activity now have additional columns detailing
how many times MPI calls were executed, how much time
was spent in MPI routines, and how much data was received
and sent. An example profile of a critical section containing
an MPI Send call is shown in Fig. 6. The parallel region
containing the critical section is executed 10 times (cf. the
execC column) with a thread team of four threads, each
MPI Send operation transmits a megabyte and the ten total
send operations (sendC column) per thread thus generate
a send volume of 10 megabytes (outV column), the total
send volume for this process from this critical section is 40
megabytes.

As mentioned earlier, our goal was to correlate the MPI
behavior to the OpenMP-level activity. Compared to existing
MPI tools this gives less detailed MPI data. There is, for
example, no differentiation between different MPI calls in the
same region and no breakdown more precise than into sends,
receives, and collectives. If a user desires this more detailed
knowledge, an existing MPI tool can be used. With ompP,
a method to achieve a similar effect is to put user-defined
instrumentation around MPI calls. For example the code block

void foo() {
MPI_Bcast()

...
MPI_Gather()

naive minimal
Operation Rank(s) Send Volume Receive Volume Send Volume Receive Volume
MPI Send and
variants

dsize 0 dsize 0

MPI Recv and
variants

0 dsize 0 dsize

MPI Sendrecv ssize rsize ssize rsize
MPI Sendrecv -
replace

dsize dsize dsize dsize

MPI Bcast root dsize× (np− 1) 0 dsize 0
other 0 dsize 0 dsize

MPI Scatter root ssize× np rsize ssize× np rsize
other 0 rsize 0 rsize

MPI Gather root ssize rsize× np ssize rsize× np
other ssize 0 ssize 0

MPI Scatterv root
∑

ssize[i] rsize
∑

ssize[i] rsize
other 0 rsize 0 rsize

MPI Gatherv root ssize
∑

rsize[i] ssize
∑

rsize[i]
other ssize 0 ssize 0

MPI Allgather all ssize× np rsize× np ssize rsize× np
MPI Allgatherv all ssize× np

∑
rsize[i] ssize

∑
rsize[i]

MPI Reduce root 0 dsize× (np− 1) 0 dsize
other dsize 0 dsize 0

MPI Reduce scatter all
∑

j 6=i dsize[j] dsize[i]× (np− 1)
∑

j 6=i dsize[j] dsize[i]

MPI Scan
0 dsize 0 dsize

1..last− 1 dsize dsize 1..last− 1 dsize dsize
last dsize last dsize

MPI Allreduce all dsize× (np− 1) dsize× (np− 1) dsize× (np− 1) dsize× (np− 1)
MPI Alltoall all ssize× np rsize× np ssize× np rsize× np
MPI Alltoallv all

∑
ssize[i]

∑
rsize[i]

∑
ssize[i]

∑
rsize[i]

MPI Barrier all time only
MPI Probe all time only
MPI Pack,
MPI Unpack

all time only

MPI Wait and
variants

all time only

Fig. 4: The MPI calls monitored by ompP and definition of the send and receive volume with two accounting settings naive,
and minimal. np is the number of processes in the communicator, dsize is used to designate the data volume (size of the
datatype times number of elements). If two datatypes can be specified, the according sizes are called rsize and ssize, for
receiving and sending, respectively.

R00005 main.c (53-58) (unnamed) CRITICAL
TID execT execC bodyT enterT exitT mpiT inV outV recvC sendC collC

0 0.41 10 0.10 0.31 0.00 0.10 0 10485760 0 10 0
1 0.35 10 0.09 0.26 0.00 0.09 0 10485760 0 10 0
2 0.43 10 0.09 0.33 0.00 0.09 0 10485760 0 10 0
3 0.41 10 0.08 0.33 0.00 0.08 0 10485760 0 10 0

SUM 1.60 40 0.37 1.23 0.00 0.37 0 41943040 0 40 0

Fig. 6: Example (flat) region profile for a critical section with MPI data. mpiT is the time spent in MPI routines, outV is the
data volume sent (in bytes), inV is the received data volume. recvC, sendC, collC are, respectively, the number of send,
receive, and collective communication operations.

}
can be changed to

void foo() {
#pragma pomp inst begin(bcast)
MPI_Bcast()

#pragma pomp inst end(bcast)
...
#pragma pomp inst begin(gather)
MPI_Gather()

#pragma pomp inst end(gather)
}
to differentiate between the broadcast and the gather call.

Some MPI tools like mpiP [7] and Scalasca [6] try to
determine the MPI callsite by unwinding the stack. This is
often technically challenging with respect to portability and
reliability and we decided to forgo such an approach for the
time being.

Another area where the profiling report was augmented
with MPI support is ompP’s overhead analysis report. OmpP
classifies the execution time of an application into useful work
and four overhead classes: synchronization, load imbalance,
thread management, limited parallelism.
• Synchronization: Overheads that arise because threads

need to coordinate their activity. An example is the
waiting time to enter a critical section or to acquire a
lock.

• Imbalance: Overhead due to different amounts of work
performed by threads and subsequent idle waiting time,
for example in work-sharing regions.

• Limited Parallelism: This category represents overhead
resulting from unparallelized or only partly parallelized
regions of code. An example is the idle waiting time
threads experience while one thread executes a single
construct.

• Thread Management: Time spent by the runtime system
for managing the application’s threads. That is, time for
creation and destruction of threads in parallel regions
and overhead incurred in critical sections and locks for
signaling the lock or critical section as available.

Time spent in MPI calls has been added as a new overhead
category, MPI, in the overhead report. An example overhead
report is shown in Fig. 7.

III. DATA ANALYSIS

There are multiple ways in which the OpenMP and MPI
programming paradigms can be integrated. The complexity as
well as the potential synergistic effects vary across those levels
as does the applicability of ompP’s combined performance
analysis model.

Maybe the most common case in existing code is the usage
of MPI outside of OpenMP parallel regions. ompP will be
able to display messaging statistics for the whole program
and for user-instrumented regions. It can also be important to
discover differences in the OpenMP execution characteristics

of the MPI processes. Radar (or spider net) charts can be used
to explore the differences between processes. For example, the
chart in Fig. 8 shows the total execution time (summed over
all threads) of the two most time consuming region in a hybrid
execution of the SMG2000 [8] application with 8 processes.
Instead of plotting the absolute execution time the plot shows
data normalized to the process with the maximum execution
time (18.11 seconds and 6.16 seconds, respectively). Evidently
the execution time for the residual computation is very uniform
accross processes while there are more marked differences in
the reduction loop.

The second case is the usage of MPI by a single, dedicated
thread inside parallel regions. The OpenMP master and
single constructs can be used to achieve this task.

Consider the following toy example: An application is
based on a MPI-level domain decomposition that induces load
imbalance among threads of a subset of the MPI processes in
a parallel work sharing region due to the size or structure
of the decomposition. Assume a collective operation such
as MPI Alltoall is necessary after the OpenMP worksharing
region. If no load imbalance occurs, processes enter the
MPI collective operation earlier, while processes with load
imbalance take longer to finish the execution and enter the
collective later.

An example of this scenario is shown in the pie charts
in Fig. 9. Each pie chart corresponds to one MPI process
and shows the breakdown of the overheads. The pie charts
show that the overall overheads contribution from this parallel
region stays approximately constant and that it is mainly the
attribution between time spent in the MPI routine and the
OpenMP-level load imbalance that changes.

The third case of combined usage is that any thread may
be making MPI calls, but only one at a time. The mutual
exclusion can be achieved by using critical sections or
locks. ompP can give detailed information about the number
of MPI calls for each thread, the time spent in MPI calls and
how those numbers differ from MPI rank to MPI rank.

The fourth case is that any thread can make calls to the MPI
library at any time without mutual exclusion. This requires a
thread-safe MPI implementation and the provision of some
application-level synchronization.

For the future this appears to be a model of increasing
importance due to the introduction of the tasking concepts
in OpenMP 3.0. A central task pool concept makes the
introduction of MPI level parallelism into OpenMP-based code
relatively easy [9]. Special tasks can be added that arrange for
data being transmitted and received, effectively implementing
a model of cross-process task stealing or distribution. A tight
integration of the analysis capabilities for OpenMP and MPI
is especially important in this case.

IV. RELATED WORK

The range of tools available for monitoring, analyzing, and
optimizing MPI applications is large. The most common and
powerful tools that originated in an academic environment

Overheads wrt. each individual parallel region:
Total Ovhds (%) = Synch (%) + Imbal (%) + Limpar (%) + Mgmt (%) + MPI (%)

R00085 17.79 10.79 (9.20) 0.00 (0.00) 3.33 (3.20) 0.00 (0.00) 6.24 (6.00) 1.22 (0.00)
R00044 5.82 3.34 (2.99) 0.00 (0.00) 1.09 (1.05) 0.00 (0.00) 2.02 (1.95) 0.23 (0.00)
R00047 5.79 4.22 (2.99) 0.00 (0.00) 1.09 (1.04) 0.00 (0.00) 2.02 (1.94) 1.11 (0.00)
...

SUM 51.67 34.86 (26.69) 0.00 (0.00) 9.74 (9.37) 0.00 (0.00) 18.01 (17.32) 7.11 (0.00)

Fig. 7: Example overhead analysis report. For each parallel region individually, and for the whole application ompP shows a
breakdown of the total execution time (summed over threads) into the five overhead classes (Synch, Imbal, Limpar, Mgmt,
and MPI).

6.0

7.0

8.0

9.0

1
0

1

2

3

4

5

6

7

POOL LELLARAP
11.81=1 403-692 c.laudiser_gms

POOL LELLARAP
0911-1811 c.noitcuder_cilcyc

61.6=1

Fig. 8: Example radar chart of the total execution time of two region of the SMG2000 application.

noitacilppA

2000R ni kroW

2000R ni cnyS

2000R ni labmI

2000R ni rapmiL

2000R ni tmgM

2000R ni IPM

Rank 1 Rank 2 Rank 3 Rank 4

w:6.01, s:0.00, i:2.01,

l:0.00, g:0.01, m:0.00

w:6.01, s:0.00, i:0.01,

l:1.00, g:0.01, m:1.00

w:6.01, s:0.00, i:2.03,

l:0.00, g:0.03, m:0.00

w:6.01, s:0.00, i:0.26,

l:0.81, g:0.14, m:0.81

Fig. 9: Example Piechart for the overheads data.

are TAU [4] (tracing and profiling), Vampir [5] (trace visu-
alization), KOJAK [10] (tracing), Scalasca [6] (tracing and
profiling), mpiP [11] (profiling), and IPM [12] (profiling).
Vendor supplied tools such as Cray PAT, Sun Studio and,
Intel trace analyzer are available in addition to the academic
offerings.

Some of the above tools also come with support for
OpenMP performance measurement (either pure OpenMP or
hybrid MPI+OpenMP). KOJAK, Scalasca, TAU, and Vampir,
as well as ompP rely on source code instrumentation using
Opari [13] to accomplish this. As vendor tools are specifi-

cally tailored to the vendor’s compiler and OpenMP runtime
implementation and generally don’t have to support other
platforms, they do not use source code instrumentation but
rely on compiler instrumentation or profiling-enabled runtime
libraries instead.

From an MPI perspective, almost all of the above tools give
the user more detailed information such as about MPI callsites,
sender-receiver pairs, and types of MPI calls. As mentioned
earlier, our goal was not to reproduce the capabilities of
existing tools, but to provide a mechanism of anchoring
basic MPI-level data in the performance space of OpenMP

programs. Our approach is unique in this OpenMP-centric
viewpoint, for example by extending ompP’s existing overhead
classification scheme to a new, messaging related overhead
class. We envision it to be most useful for programmers that
start with an OpenMP program and wish to add MPI-level
parallelism. While this will be generally the more uncommon
and challenging way to hybrid parallel programs, new mech-
anisms such as tasking can make the integration of message
passing easier to handle while at the same time necessitating
a detailed threads-based analysis of messaging behavior.

V. CONCLUSION AND FUTURE WORK

We have presented extensions to an existing OpenMP
profiling tool, ompP, for monitoring hybrid (OpenMP +MPI)
applications. The focus for our tool remains on the OpenMP
side, where we see MPI as a mechanism for an application
comprised of several OpenMP parallel processes to commu-
nicate. OmpP allows the application developer to explore the
MPI activity on a per-thread basis and correlate this with other
threads-based data. OmpP provides for the ability to investigate
the differences in OpenMP execution characteristics between
processes, such as differences in execution time, hardware
counters, or runtime overheads. OmpP accounts for the data
transmitted by point to point and collective operations and
for the time spent in MPI routines, it does not provide more
detailed information such as statistics for each pair of senders
and receivers.

Future and extended work is planned in multiple directions.
First, as mentioned in Sec. II-B2 it is not possible to identify
the actual amounts of performance data being sent or received
at the MPI profiling layer and ompP gives the user the choice
of displaying reasonably logic upper or lower bounds.

By using counter logic located on network interface cards
such a correlation of the logical MPI behavior to the actual
physical implementation can be accomplished. An extension
to the PAPI [14], [15] library to handle non-CPU counter
data sources is currently being developed under the name
component PAPI (PAPI-C) [16]. Support for component PAPI
can be readily included in ompP and this would allow for the
immediate correlation in the reported profiling data.

Another area for future work will be the integration with
existing powerful MPI profiling tools such as IPM and mpiP.
The goal here is to correlate and display the data delivered
by those tools in an integrated way that allows a developer
to make most use of it. Data for this can come either from
multiple runs, one for each tool being used, or, preferably, by
using an approach such as PNMPI [17] that allows multiple
MPI-level tools to be used simultaneously.

REFERENCES

[1] S. L. Graham, P. B. Kessler, and M. K. McKusick, “gprof: A call graph
execution profiler,” SIGPLAN Not., vol. 17, no. 6, pp. 120–126, 1982.

[2] J. Levon, “OProfile, A system-wide profiler for Linux systems,” home-
page: http://oprofile.sourceforge.net.

[3] M. Itzkowitz, O. Mazurov, N. Copty, and Y. Lin, “An OpenMP runtime
API for profiling,” accepted by the OpenMP ARB as an official
ARB White Paper available online at http://www.compunity.org/futures/
omp-api.html.

[4] S. S. Shende and A. D. Malony, “The TAU parallel performance system,”
International Journal of High Performance Computing Applications,
ACTS Collection Special Issue, 2005.

[5] H. Brunst and B. Mohr, “Performance analysis of large-scale OpenMP
and hybrid MPI/OpenMP applications with VampirNG,” in Proceedings
of the First International Workshop on OpenMP (IWOMP 2005), Eu-
gene, Oregon, USA, May 2005.

[6] M. Geimer, F. Wolf, B. J. N. Wylie, and B. Mohr, “Scalable parallel
trace-based performance analysis,” in Proceedings of the 13th European
PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual
Machine and Message Passing Interface (EuroPVM/MPI 2006), Bonn,
Germany, 2006, pp. 303–312.

[7] J. S. Vetter, “Dynamic statistical profiling of communication activity in
distributed applications,” in Proceedings of the 2002 ACM International
Conference on Measurements and Modeling of Computer Systems (SIG-
METRICS 2002). Marina Del Rey, California: ACM Press, 2002, pp.
240–250.

[8] P. N. Brown, R. D. Falgout, and J. E. Jones, “Semicoarsening multigrid
on distributed memory machines,” SIAM J. Sci. Comput., vol. 21, no. 5,
pp. 1823–1834, 2000.

[9] K. Fürlinger, O. Schenk, and M. Hagemann, “Task-queue based hybrid
parallelism: A case study,” pp. 624–632, 2004.

[10] F. Wolf and B. Mohr, “Automatic performance analysis of hybrid
MPI/OpenMP applications.” in Proceedings of the 11th Euromicro Con-
ference on Parallel, Distributed and Network-Based Processing (PDP
2003). IEEE Computer Society, Feb. 2003, pp. 13–22.

[11] J. S. Vetter and A. Yoo, “An empirical performance evaluation of
scalable scientific applications,” in Proceedings of the 2002 Conference
on Supercomputing (SC 2002), Baltimore, Maryland, USA, 2002, pp.
1–18.

[12] D. Skinner, “Performance monitoring of parallel scientific applications,”
Lawrence Berkeley National Laboratory, Tech. Rep. LBNL-PUB-5503,
May 1, 2005.

[13] B. Mohr, A. D. Malony, S. S. Shende, and F. Wolf, “Towards a
performance tool interface for OpenMP: An approach based on di-
rective rewriting,” in Proceedings of the Third Workshop on OpenMP
(EWOMP’01), Sep. 2001.

[14] “PAPI web page: http://icl.cs.utk.edu/papi/.”
[15] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. J. Mucci, “A

portable programming interface for performance evaluation on modern
processors,” Int. J. High Perform. Comput. Appl., vol. 14, no. 3, pp.
189–204, 2000.

[16] “Component papi documentation: http://icl.cs.utk.edu/projects/papi/files/
documentation/PAPI-C.html.”

[17] M. Schulz and B. R. de Supinski, “A flexible and dynamic infrastructure
for MPI tool interoperability,” in Proceedings of the 2006 International
Conference on Parallel Processing (ICPP-06), Washington, DC, USA,
2006, pp. 193–202.

