Finding Inefficiencies in OpenMP Applications
Automatically with Periscope*

Karl Fiirlinger and Michael Gerndt

Institut fiir Informatik,
Lehrstuhl fiir Rechnertechnik und Rechnerorganisation
Technische Universitat Miinchen
{Karl.Fuerlinger, Michael.Gerndt}@in.tum.de

Abstract. Performance optimization of parallel programs can be a time-
consuming and difficult task. Therefore, tools are desirable that help ap-
plication developers by automatically locating inefficiencies. We present
Periscope, a system for automated performance analysis based on the
notion of performance properties.

We present the overall architecture of Periscope, which consists of a set
of analysis agents and show how properties of OpenMP applications are
detected. We describe the set of OpenMP properties we have defined
so far and the data model used in the specification of these properties.
Practical tests on the feasibility of our approach are performed with a
number of OpenMP applications.

1 Introduction

With creating scientific parallel programs comes the question of efficiency. Does
the program make optimal use of the available resources? Is the effort of paral-
lelization paying off or is performance lost somewhere? Assisting programmers
in answering such questions by automated performance analysis is important
because performance analysis can be a difficult and time-consuming task.

In this paper we present Periscope, a tool for automated performance analysis
of OpenMP and MPI codes and evaluate it on finding inefficiencies in OpenMP
applications. Periscope detects inefficiencies by automatically searching for per-
formance problems that are specified in terms of performance properties. We
present the overall design and implementation of Periscope and test it on a
number of OpenMP applications.

The rest of this paper is organized as follows: In Sect. 2 we describe the overall
structure of Periscope and our monitoring approach for OpenMP applications.
We describe how properties are specified with respect to a data model and specify
the data model for OpenMP applications. Sect. 3 then describes a number of
properties we have defined for OpenMP. In Sect. 4 we test our approach on a
several applications from the NAS benchmark suite, in Sect. 6 we summarize
and discuss ideas for future work.

* This work was partially funded by the Deutsche Forschungsgemeinschaft (DFG)
under contract GE1635/1-1.

This publication’s copyright lies
with a publishing company, check the
full citation for publisher information.

TUMuser
New Stamp

2 Periscope

Periscope is a system for automated performance analysis on large-scale cluster-
like systems. The analysis is performed by a set of agents distributed over the
machine. The agents are arranged in a hierarchy, node-level agents form the
lowest level of the hierarchy, a master-agent integrates the performance data of
the whole system and connects to the front-end of the tool with is the interface
to the user. Intermediate agents form a tree with the master-agent as root and
the node-level agents as leaves. All components use a registry service to register
themselves and to discover higher or lower level agents, see Fig. 1.

:IQ /= /= /=
v Node! Node Node Nod¢
' “I'\’-e-g;is-tr;/-“. Intermediate E E
_ Service Agents .
X ' Target Application
Too! Front.End : ’%m“' : B process
ool Front-En
. Agent . O Node-Level

E Spare Nodes for Performance:

! Analysis.

Interactive Host

Fig. 1. The arrangement of the Periscope agents forms a hierarchy. At the lowest level,
node-agents detect performance properties. Intermediate agents integrate the results
of the node-level agents. A single master agent forms the connection to the tool’s
front-end. All components register themselves with a registry service.

While parts of the Periscope system are still under development (e.g., the
higher-level agents) the functionality for performance analysis of OpenMP ap-
plications is already available in the node-level agents and this is what we eval-
uate in this paper. Periscope’s agent hierarchy mainly serves to enable scalable
analysis on large machines (hundreds of nodes), where the central collection of
performance data can lead to problems related to the scalability of data man-
agement, analysis and visualization.

Periscope’s node-level agents perform an automated search for performance
properties of the target application. The properties are formally specified in
a language called ASL (APART specification language) [1] with respect to a
certain data-model that depends on the particular programming model used
(message passing or shared memory programming). The data model for OpenMP
is described in the next section, while the properties we have defined for OpenMP
are described in Sect. 3

ParPerf {

Region *reg, // The region for which the summary is collected
Experiment *exp, // The experiment where this data belongs to

int threadC, // Number of threads that executed the region
double execT[], // Total execution time per thread

double execC[], // Total execution count per thread

double exitBarT[], // Time spent in the implicit exit barrier
double singleBodyT[]l, // Time spent inside a single construct

int singleBodyC[], // Execution count in a single construct

double enterT[], // Time spent waiting to enter a construct

int enterC[], // Number of times a threads enters a construct
double exitTI[], // Time spent to exit a construct

int exitC[], // Number of times a thread exits a construct
double sectionT[], // Time spent inside a section construct

int sectionC[], // Number of times a section construct is entered
double startupTI[], // Time required to create a parallel region
double shutdownT[], // Time required to destroy a parallel region

Fig. 2. The ParPerf structure contains summary data for OpenMP constructs.

2.1 Monitoring and Data Model

We monitor the execution of OpenMP applications using the POMP monitoring
interface [5] and the Opari [6] source-to-source instrumenter. Opari adds calls
to a POMP compliant monitoring library in and around OpenMP constructs.
Periscope implements the POMP interface in a library that is linked with the
target application and is thus able to observe the execution of OpenMP appli-
cations.

Our monitoring library observes the events the application generates and
writes event records to a buffer that is located in a shared memory segment.
The event records are processed and analyzed by a node-level agent executing
on the same node as the target application. This way, we try to minimize the
perturbation of the target application, as any more time-consuming analysis is
performed by the node-level agent executing on a processor set-aside for per-
formance analysis. More details about our monitoring system as outlined above
can be found in [2].

The node-level analyzes the monitoring events and generates performance
data corresponding to the ASL data model. For OpenMP applications, the data
model is represented by the ParPerf data structure shown in Fig. 2.

The ParPerf structure holds summary (profiling) data for individual OpenMP
regions (i.e., the extent of OpenMP regions and user-defined regions). The reg
member of the ParPerf structure points to the region for which the data is col-
lected. The meaning of the other members is briefly explained in the form of
“comments” in Fig. 2. In [3] we describe this data model in detail. Note that not

all data members are meaningful for all OpenMP regions. For example, sectionT
and sectionC are only defined for a section construct.

3 Performance Properties

Performance properties are formally specified in ASL (APART specification lan-
guage). The property specification has three major components: condition, con-
fidence and severity. Severity describes the impact on the performance of the
application that a property represents. Confidence is a measure of the certainty
that a property holds and condition specifies how the property can be checked.
An example ASL specification for the ImbalanceAtBarrier property is shown
in Fig. 3.

In this example, and in general, the severity depends on the computed im-
balance which is divided by a value returned by a ‘ranking basis’ function (RB).
The ranking basis allows a scaling of the severity with respect to the experiment
conducted. In all results presented in this study, the ranking basis corresponds
to the overall time used by all threads (wall-clock time x number of threads).
Hence the severity of a property corresponds to improvement in runtime a pro-
gram would experience, if the reason for the inefficiency could be eliminated
entirely.

property ImbalanceAtBarrier(ParPerf pd) {
let
imbal = pd.execT[0]+...+pd.execT[pd.threadC-1];

condition : (pd->reg.type==BARRIER) && (imbal > 0);
confidence : 1.0;
severity : imbal / RB(pd.exp);

}

Fig. 3. The ASL specification of the ImbalanceAtBarrier property.

Among others we have defined the following properties for OpenMP ap-
plications: ImbalanceAtBarrier, ImbalanceInParallelSections, Imbalance-
InParallellLoop, ImbalanceInParallelRegion, UnparallelizedInSingleRe-
gion, UnparallelizedInMasterRegion, ImbalanceDueToNotEnoughSections,
ImbalanceDueToUnevenSectionDistribution, LockContention, and Criti-
calSectionContention.

The ImbalanceAtBarrier and ImbalanceIn* properties refer to time spent
waiting at explicit or implicit barriers, respectively. For explicit (programmer-
added) barriers the barrier wait time of thread n is available in the execT [n]
member of the ParPerf structure, see Fig. 3. Implicit barriers are added to work-
sharing constructs and parallel regions by Opari in order to measure the load

imbalance. The waiting time is available in the exitBarT member in this case
(the barrier is added at the end of the respective construct, hence the name).

The ImbalanceDueTo* properties give the reason for the discovered imbal-
ance in a more detailed fashion. NotEnoughSections refers to the fact that there
where too few sections for the available number of threads, whereas UnevenSec-
tionDistribution indicates that some threads executed more sections than
others. As an example consider a section construct that contains six individual
sections. When the work per section is approximately equal and four threads
execute the construct, two threads will execute 2 sections and two threads will
only execute one. If, on the other hand, eight threads are used, six threads will
each execute one section and the remaining two will be idle. The sectionC mem-
ber of ParPerf can be used to find out the number of section constructs executed
by each thread.

The UnparallelizedIn#* properties capture the situation that time was lost
due to a single thread executing a construct. For single constructs the severity
is measured by the summed time in exitBarT, for master region, the severity
is approximated by the master’s time divided by the number of threads.

CriticalSection and LockContention sum up the time lost due to threads
waiting to acquire a lock or to enter a critical section, respectively. The properties
are based on the enterT and exitT times.

3.1 Implementation

In Periscope properties are implemented as C++ classes compiled to dynamically
loadable objects (.so files). To simplify development, only the condition code
has to be written for each property and a script generates a complete C+-+
class. A severity value is computed in the condition code and is returned by
the severity method of the C++ class, the confidence is fixed to 1.0 for our
prototype implementation.

Having the properties available as dynamically loadable modules allows the
development and deployment of the tool separately from the “knowledge base”.
Without changing the main tool, new performance properties can be imple-
mented and tested or existing ones can be modified.

4 Test Setup and Results

We tested Periscope on the OpenMP version of the NAS parallel benchmarks
version 3.2. The programs in the NAS benchmark suite are derived from CFD
applications, consists of five kernels (EP, MG, CG, FT, IS) and three simulated
CFD applications (LU, BT, SP).

We executed the applications on a 32-CPU SGI Altix system based on
Itanium-2 processors with 1.6 GHz and 6MB L3 Cache using a batch system.
The number of threads was set to eight and the Periscope node-level agent was
executed on a separate CPU (i.e., nine CPUs were requested for the batch runs).

The Periscope node-level agents have the ability to conduct the search for
performance properties at any time during the execution of the target application
(on-line performance analysis). In this study, however, we use the node-level
agents in a post-mortem mode, i.e., the search for performance properties is
triggered when the application finishes.

The table in Figure 4 shows all properties identified by Periscope for the
NAS benchmarks. Note that for completeness this table shows all properties
without applying a severity cutoff threshold. Some properties in Table 4 have
very low severity values and do not actually represent severe performance prob-
lems. Table 5 shows the three most severe properties identified by Periscope. All
properties have severity values below nine percent. Most properties are in the
range of three or four percent.

[Property [BT CG EP FT IS LU MG SP|
ImbalanceAtBarrier 1 3
ImbalanceInParallelSections

ImbalanceInParallelLoop 12 13 1 8 2 9 12 16
ImbalanceInParallelRegion 6 9 1 2 8 2 5
UnparallelizedInSingleRegion 3
UnparallelizedInMasterRegion 4 13 2 5

ImbalanceDueToNotEnoughSections

ImbalanceDueToUnevenSectionDistribution
CriticalSectionContention 1
LockContention

Fig. 4. Performance Properties identified by Periscope. This table lists all discovered
performance properties, even such with very low severity values.

5 Related Work

A number of tools try to automate the process of performance analysis. Expert [9]
performs automated search for inefficiencies in trace files. The execution of in-
strumented programs generates traces in the Epilog format that are analyzed by
Expert. Expert presents the results in a viewer with three hierarchies, one hier-
archy contains the type of inefficiency, one hierarchy shows the machine and one
hierarchy shows the program’s resources (files, functions,...). Recent improve-
ments of Expert include an algebra for performing cross-experiment analysis
and support for virtual topologies.

Paradyn [4] is a tool for automated on-line performance analysis based on
dynamic instrumentation. In the running application Instrumentation is added
and removed as required by the currently tested hypothesis (which performance
problem exist) and focus (where the problem exists). An infrastructure for the
efficient collection of performance data called MRNet [7] has been developed and

Benchmark Property Region Severity ‘

BT ImbalanceInParallelLoop rhs.f 177--290 0.0446
BT ImbalanceInParallelLoop y_solve.f 40--394 0.0353
BT ImbalanceInParallelLoop rhs.f 299--351 0.0347
CG ImbalanceInParallelLoop cg.f 556--564 0.0345
CG ImbalanceInParallelRegion cg.f 772--795 0.0052
CG ImbalanceInParallelRegion cg.f 883--957 0.0038
EP ImbalanceInParallelRegion ep.f 170--230 0.0078
EP ImbalanceInParallelLoop ep.f 129--133 0.0001
FT ImbalanceInParallelLoop ft.f 606--625 0.0676
FT ImbalanceInParallelLoop ft.f 653--672 0.0304
FT ImbalanceInParallelLoop ft.f 227--235 0.0269
IS ImbalanceAtBarrier is.c 526 0.0272
IS ImbalanceInParallelRegion is.c 761--785 0.0087
IS ImbalanceInParallelLoop is.c 397--403 0.0020
LU ImbalanceAtBarrier ssor.f 211 0.0040
LU ImbalanceAtBarrier ssor.f 182 0.0032
LU ImbalanceInParallelLoop rhs.f 189--309 0.0011
MG ImbalanceInParallelLoop mg.f 608--631 0.0831
MG ImbalanceInParallelLoop mg.f 779--815 0.0291
MG ImbalanceInParallelLoop mg.f 536--559 0.0248
Sp ImbalanceInParallellLoop x_solve.f 27--296 0.0285
SP ImbalanceInParallelLoop y_solve.f 27--292 0.0265
SP ImbalanceInParallelloop z_solve.f 31--326 0.0239

Fig. 5. The three most severe performance properties with source-code location and
severity value, identified by Periscope (only two properties were found for EP).

integrated in Paradyn, while the search for performance problems is still per-
formed centrally by Paradyn’s Performance Consultant. Recently, a distributed
search methodology supporting a partially distributed approach and a fully dis-
tributed approach has been added to Paradyn, called the Distributed Perfor-
mance Consultant [8].

6 Summary and Future Work

Periscope is a tool for performance analysis based on the automated search for
performance properties. Properties are formally specified with respect to a data-
model that depends on the programming model employed. We described the
data model used for OpenMP applications and a set of properties based on that
data model.

We have tested Periscope and the performance properties on the OpenMP
NAS benchmark suite. The study shows that Periscope is an efficient tool for
the automated detection of inefficiencies. Inefficiencies were detected in each
of the applications. In some applications the detected inefficiencies were not
signification (e.g., EP); for MG an inefficiency of about 8 percent was discovered.

An attractive feature of Periscope lies in the fact that the specification of the
tool’s knowledge base is separate from the implementation of the tool itself. Per-
formance properties are specified as C++ objects that are compiled into shared
objects that are dynamically loaded by Periscope at tool startup. This allows
for an easy extension of Periscope without the need to re-compile the entire
tool and allows a performance expert to easily experiment with new property
specifications.

Future work is planned along several directions: the data model described in
this paper and the properties specification based on it only use timing data. For
the future we plan to integrate hardware-counter data as well. This will enable
the detection of important inefficiencies, related to cache usage for example.

References

1. Thomas Fahringer, Michael Gerndt, Bernd Mohr, Felix Wolf, Graham Riley, and
Jesper Larsson Tréaff. Knowledge specification for automatic performance analysis.
APART technical report, revised edition. Technical Report FZJ-ZAM-IB-2001-08,
Forschungszentrum Jiilich, 2001.

2. Karl Fiirlinger and Michael Gerndt. Distributed application monitoring for clustered
SMP architectures. In Harald Kosch, Laszlé Boszorményi, and Hermann Hellwag-
ner, editors, Proceedings of the 9th International Euro-Par Conference on Parallel
Processing, pages 127-134. Springer, August 2003.

3. Karl Fiirlinger and Michael Gerndt. Performance analysis of shared-memory paral-
lel applications using performance properties. In Proceedings of the 2005 Interna-
tional Conference on High Performance Computing and Communications (HPCC-
05), pages 595-604, September 2005. Accepted for publication.

4. Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.
Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam, and
Tia Newhall. The Paradyn parallel performance measurement tool. IEEE Com-
puter, 28(11):37-46, 1995.

5. Bernd Mohr, Allen D. Malony, Hans-Christian Hoppe, Frank Schlimbach, Grant
Haab, Jay Hoeflinger, and Sanjiv Shah. A performance monitoring interface for
OpenMP. In Proceedings of the Fourth Workshop on OpenMP (EWOMP 2002),
September 2002.

6. Bernd Mohr, Allen D. Malony, Sameer S. Shende, and Felix Wolf. Towards a per-
formance tool interface for OpenMP: An approach based on directive rewriting. In
Proceedings of the Third Workshop on OpenMP (EWOMP’01), September 2001.

7. Philip C. Roth, Dorian C. Arnold, and Barton P. Miller. MRNet: A software-
based multicast/reduction network for scalable tools. In Proceedings of the 2008
Conference on Supercomputing (SC 2003), November 2003.

8. Philip C. Roth and Barton P. Miller. The distributed performance consultant and
the sub-graph folding algorithm: On-line automated performance diagnosis on thou-
sands of processes. 2005. Submitted for Publication.

9. Felix Wolf and Bernd Mohr. Automatic performance analysis of hybrid
MPI/OpenMP applications. In Proceedings of the 11th Euromicro Conference on
Parallel, Distributed and Network-Based Processing (PDP 2003), pages 13-22. IEEE
Computer Society, February 2003.

